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a b s t r a c t

In this paper, we present two compression methods for irregular three-dimensional (3-D)
mesh sequences with constant connectivity. The proposed methods mainly use an exact
integer spatial wavelet analysis (SWA) technique to efficiently decorrelate the spatial
coherence of each mesh frame and also to adaptively transmit mesh frames with various
spatial resolutions. To reduce the temporal redundancy, the first proposed method applies
multi-order differential coding (MDC) to the temporal sequences obtained from SWA. MDC
determines the optimal order of the differential coder by analyzing the variance of predic-
tion errors. Comparing with the first order differential coding (FDC) scheme, the method
can improve the compression performance. The second proposed method applies temporal
wavelet analysis (TWA) to the temporal sequences. In particular, this method offers spatio-
temporal multi-resolution coding. Through simulations, we prove that our methods enable
efficient lossy-to-lossless compression for 3-D mesh sequences in a single frame work.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

With the remarkable progress of multimedia and information technologies, three-dimensional (3-D) data has been more
and more widely used in various applications such as virtual reality, video games, animation movies and medical images.

Polygonal meshes provide an efficient representation of 3-D objects [1,2], since they can be rapidly rendered by existing
graphics hardware. Like as the categorization of 2-D still images and motion pictures, they can be classified into static
meshes and mesh sequences. Static meshes contain two kinds of principal information, the locations of vertices and their
topological connections – geometry and connectivity, respectively. Similar to motion pictures, a 3-D mesh sequence consists
of consecutive static meshes. The motion of meshes is usually represented by vertex displacements. These kinds of mesh
sequences have constant connectivity information over all mesh frames. On the other hand, some mesh sequences might
have variable connectivity over all or partial mesh frames. In this paper, we address only mesh sequences with constant
connectivity.

Generally, mesh sequences obtained by 3-D scanners or mesh design tools such as 3-D Studio MAX require huge capacity
or enormous bandwidth to be stored or transmitted. For that reason, it has become an important issue to develop
efficient compression methods for 3-D mesh sequences. Similar to 2-D motion picture compression, spatial and temporal
redundancies are mainly exploited to minimize data size. To reduce the spatial redundancy, the geometry and connectivity

0096-3003/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2010.01.032

* Corresponding author.
E-mail addresses: jaewon79.cho@samsung.com (J.W. Cho), sebastien.valette@creatis.insa-lyon.fr (S. Valette), jessie@yu.ac.kr (J.H. Park), hoyoul@yu.ac.kr

(H.Y. Jung), remy.prost@creatis.insa-lyon.fr (R. Prost).

Applied Mathematics and Computation 216 (2010) 410–425

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc



Author's personal copy

information of a single mesh frame can be modeled for entropy coding. The geometrical coherence in temporal direction be-
tween consecutive mesh frames can be used to reduce the temporal redundancy. Clearly, other attributes such as normal
vectors or texture information could be also regarded as important components to be compressed. Note that we focus on
geometry coding in this paper.

Since Lengyel [3] proposed a geometry compression method for 3-D mesh sequences, there have been several attempts
to reduce the spatial and geometry redundancies [3–10]. In [3], the original meshes are segmented into small rigid body
meshes. The motion of each rigid body mesh is represented by affine transform coefficients, then the coefficients and resid-
uals are quantized and encoded by an entropy coder. This algorithm uses temporal coherence of rigid body meshes to reduce
temporal redundancy. However, this method has difficulties to obtain precise segmentation and cannot have good coding
performance for the mesh sequences with high geometrical complexity. A quantization based method was also presented
by Zhang and Owen [4]. They proposed a hybrid compression method combining delta and octree coding schemes. For each
mesh frame, the geometry information is encoded by using selectively one of two coding schemes which has smaller pre-
diction errors. This technique requires high processing time, because it iterates the encoding processes until the predeter-
mined visual quality of the decoded mesh sequences. Some principal component analysis (PCA) based methods have been
presented [5,6]. Alexa and Müller [5] represented 3-D mesh sequences using several principal bases obtained by PCA. Karni
and Gotsman [6] expanded it to a hybrid method combining PCA and linear prediction coding (LPC). However, these meth-
ods essentially require high computational complexity to calculate the eigenvectors. Ibarria and Rossignac [7] introduced an
efficient compression method which can simultaneously reduce the temporal and spatial redundancies by using a space-
time replica predictor. Recently, scalability has become an important issues in video coding, as it facilitates to adaptively
manage bit-rates according to different conditions of bandwidth or capacity [11]. From the viewpoint of scalable coding,
wavelet transform – spatial wavelet analysis (SWA) and/or temporal wavelet analysis (TWA) – is suitable for 3-D mesh se-
quences. Some wavelet-based methods have been introduced [10,8,9]. Payan and Antonini [10] used a TWA to reduce tem-
poral redundancy. Although they achieved good compression performance by using their optimal bit allocation scheme,
they did not consider the spatial redundancy. Guskov and Khodakovsky [8] introduced a SWA-based compression algorithm.
They encoded the differential errors between the wavelet coefficients of previous and current frames. Here, the wavelet
coefficients are obtained from the Burt–Adelson style pyramid scheme. The method can provide the spatial resolution
scalability.

In this paper, we propose two compression techniques of the mesh geometry for 3-D mesh sequences with constant con-
nectivity. To reduce the spatial redundancy, both proposed methods use the SWA technique which employs an exact integer
analysis and synthesis filter bank [12]. The filters can be directly applied to irregular meshes. Besides, they can easily achieve
lossy-to-lossless compression.1 In order to reduce the temporal redundancy, we consider two different techniques, multi-order
differential coding (MDC) and TWA. The first method uses SWA and MDC schemes. In our previous work [9], we used a first
order differential coding (FDC) technique employing IPPP frame pattern coding which combines Intra-mesh and Predicted-mesh
coding. To improve the coding efficiency, we introduce a more sophisticated approach in which the variances of prediction er-
rors are analyzed to find the optimal order. The second method employs both SWA and TWA schemes. Although TWA scheme
was applied in a previous algorithm [10], there has been no attempt to apply SWA and TWA, simultaneously. Both proposed
methods can provide lossy-to-lossless compression if input mesh sequences have integer coordinates. The first method can
reconstruct mesh sequences with various spatial resolutions, and the second enables temporal multi-resolution coding as well
as spatial one.

The rest of this paper is organized as follows. In Section 2, SWA and TWA techniques, which are used in our compression
schemes, are introduced. Section 3 shows that the entropy coding efficiency can be estimated from the variance of the pre-
diction model. Two compression methods using wavelet-based multi-resolution analysis are proposed in Section 4. Section 5
shows the simulation results of the proposed methods in terms of lossless and lossy compression performances. Finally, Sec-
tion 6 concludes this paper.

2. Overview of wavelet-based multi-resolution analysis

Early compression methods for multimedia data have been mainly concentrated on the development of single-rate coding
system. Although single-rate coding has enough performance in a network environment with fixed bandwidth, it might be
difficult to be promptly applied to variable bandwidth conditions. For that reasons, scalable coding techniques such as the
annexed functionalities of motion picture experts group (MPEG)-2 and -4 have been intensively researched. In general scal-
able decoding frameworks, the coarsest version is first reconstructed from the base layer, and higher resolution versions are
adaptively produced from the enhancement layers depending on channel conditions. It has been well-known that wavelet-
based multi-resolution analysis techniques are useful for scalable coding. Besides, they provide good coding performance, as
the probability density function (PDF) of the wavelet coefficients can be approximated to Laplacian distribution with a sharp
peak [9]. These are the reasons why we use SWA and TWA in order to design efficient 3-D mesh sequence compression sys-
tems. In the following sub-sections, SWA and TWA schemes are summarized.

1 In general, lossy compression gain is determined by quantization via Rate-Distortion (R-D) optimization. Note that, in this paper, we regard ‘multi-
resolution transmission (or representation)’ as ‘lossy compression’ because it could also reduce data size.
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2.1. Spatial wavelet analysis (SWA) and its synthesis

The wavelet-based multi-resolution scheme for 3-D static meshes was firstly introduced by Lounsbery [13]. Fig. 1 shows
an example of SWA and its synthesis processes. From the original mesh CJ , the SWA is performed by two analysis filters, Aj

(low-pass filter) and Bj (high-pass filter) as follows

Cj�1 ¼ AjCj ð1Þ
Dj�1 ¼ BjCj for 0 6 j 6 J ð2Þ

where j is the spatial resolution level, and Cj is a v j � 3 matrix representing the vertex coordinates (x-;y-, and z-coordinates)
of the input mesh having v j vertices. A fine mesh Cj is decomposed into a coarse mesh Cj�1 and wavelet coefficients Dj�1. The
wavelet coefficients represent the lost details. We obtain a hierarchy of meshes from the original CJ to the simplest one, C0,
so-called base mesh.

The reconstruction is done by two synthesis filters, Pj and Qj. It is formulated as

Cj ¼ PjCj�1 þ Q jDj�1 ð3Þ

A fine mesh is reconstructed from the coarse one and the corresponding wavelet coefficients. If the filter-banks satisfy the
following constraint, we can achieve perfect reconstruction [12,14].

Aj

Bj

" #
¼ PjjQ j
h i�1

ð4Þ

Lounsbery’s scheme handles meshes with one-to-four (1:4) subdivision connectivity. The mesh hierarchy can be considered
as successive quadrisections of a base mesh ðC0Þ faces followed by deformation of edge midpoints to fit the surface to be
approximated. The vertices of coarse mesh have arbitrary valences while the subdivided mesh interiors and boundary ver-
tices have valence six and four, respectively. Conversely, four-to-one (4:1) face coarsening in Eq. (1) is the inverse operation
of quadrisection. The wavelets functions, in this scheme, are hat functions associated with odd vertices of the mesh at res-
olution j and linearly vanishing on the opposite edges. This wavelet is often called the ‘Lazy wavelet’. The scaling functions
are also hat function but with a twice wider support and are associated with the even vertices. However, wavelets are not
orthogonal to scaling functions. Then a primal 2-ring lifting is used to construct new wavelets which are more orthogonal to
the scaling functions. These wavelets produce the coarse meshes with good quality in terms of approximation.

Recently the wavelet multi-resolution analysis has been extended to irregular mesh (vertices can have any valence) by
Valette and Prost [12]. In [15], they also introduced an exact integer analysis and synthesis with the lifting scheme based
on Lazy filter-banks and the Rounding transform [16,17]. Now, the analysis is sequentially performed by the lifted Lazy fil-
ter-banks.

Dj�1 ¼ Bj
lazyCj

j k
ð5Þ

Cj�1 ¼ Aj
lazyCj þ ajDj�1

j k
ð6Þ

where Aj
lazy and Bj

lazy are Lazy analysis filters, and aj is a v j�1 � ðv j � v j�1Þmatrix chosen to ensure that Cj�1 is the best approx-
imation of Cj. The synthesis is done by

Cj ¼ Pj
lazy Cj�1 � ajDj�1

j k� �
þ Q j

lazyDj�1
l m

ð7Þ

where Pj
lazy and Qj

lazy are Lazy synthesis filters, and b�c and d�e are the floor and ceiling operators, respectively. These modified
filter-banks make it possible to implement a lossless compression for the given meshes with integer coordinates. In addition,
they can be applied to irregular meshes by using an irregular subdivision scheme [15]. Note that the Lounsbery’s method
based on regular subdivision scheme [13] cannot work on irregular ones. These are the reasons why our methods use this
exact integer analysis/synthesis scheme and an irregular coarsening approach. The notation ‘SWA’ indicates the exact integer
spatial wavelet analysis in the rest of this paper. For more details about the SWA, refer to [12,15] and [18].

Fig. 1. Spatial wavelet analysis (SWA) and its synthesis processes.
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2.2. Temporal wavelet analysis (TWA) and its synthesis

Fig. 2 shows an example of the TWA and its synthesis processes. In the wavelet analysis process, the original signal xðnÞ
(for 1 6 n 6 N, and N is the number of samples) is decomposed into low and high frequency band signals, y0ðnÞ and y1ðnÞ, by
an analysis filter-bank, h0ðnÞ and h1ðnÞ. Here, N should be an integer power of two. If a practical temporal sequence has arbi-
trary number of samples, it can be classified into several groups (each group consists of N samples). And then TWA is applied
to each group. Note that the extra samples can be added by zeros in order that the last group has N samples. From the view
point of coding efficiency, we need to carefully determine the number of groups, since the bit-rate can increase as the num-
ber of extra sample does. Low and high frequency band signals correspond to the coarse version of the original signal and its
details, respectively. To obtain more resolution levels, the analysis process can be repeatedly applied to the low frequency
band signal. In the wavelet synthesis process, the two sub-band signals are transformed into a reconstructed signal x̂ðnÞ by a
synthesis filter-bank, g0ðnÞ and g1ðnÞ. Note that the implementation allows lossless compression using a lifting scheme
[19,16,20].

In our second proposed method (see Section 4.2), TWA is applied to whole temporal sequences. Here, temporal move-
ment of each coordinate is regarded as a 1-D signal as in [10].

3. Estimation of entropy coding efficiency

To improve the entropy coding efficiency, there have been many trials to produce a good prediction model whose distri-
bution exhibits one sharp peak. The more the distribution concentrates on a specific value, the better the coding efficiency
can be expected. A good statistical model for the prediction errors is a Laplacian distribution. The coding efficiency can be
estimated by using the variance of the distribution.

Consider a continuous random variable X with zero mean Laplacian distribution for which the PDF is defined by

pXðxÞ ¼
k
2

e�kjxj: ð8Þ

Here, the sharpness of the distribution can be determined by the parameter k. Clearly, the entropy2 of the random variable,
HðXÞ, is obtained as [21]

HðXÞ ¼
Z 1

�1
pXðxÞlog2

1
pXðxÞ

dx ¼ log2
2
k
þ 1

ln 2
: ð9Þ

The variance, r2, is given by the second moment E½X2�:

r2 ¼ E½X2� ¼
Z 1

�1
x2pXðxÞdx ¼ 2

k2 : ð10Þ

From Eqs. (9) and (10), both the entropy and variance are functions of k. Therefore Eq. (9) can be rewritten as

HðXÞ ¼ log2r
ffiffiffi
2
p
þ 1

ln 2
: ð11Þ

Fig. 3 shows a relationship between the entropy and the variance according to different r. As shown in this figure, the var-
iance is highly correlated with the entropy. In our approaches, the entropy coding efficiency is estimated using the variance
of prediction model.

Fig. 2. 2-Channel temporal wavelet analysis (TWA) and its synthesis processes.

2 This type of entropy is named ‘continuous or differential entropy’. It could sometimes have negative values and then be inefficient to measure the amount
of information comparing with Shannon entropy. Note that we just use continuous entropy to demonstrate the inter-relationship between entropy and
variance focusing on a statistical model, Laplacian distribution.
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Fig. 3. Relationship between the entropy and the variance according to different r.

Fig. 4. The encoding process of the proposed method using SWA and MDC techniques.

Fig. 5. Variances ðr2Þ of prediction errors of Face model according to different orders (m) of MDC. The x-coordinate of the first base mesh vertex sequence of
this model is designated for a practical example.

414 J.W. Cho et al. / Applied Mathematics and Computation 216 (2010) 410–425
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4. Proposed compression methods

The proposed methods mainly use the exact integer SWA scheme [15] introduced in Section 2.1. The SWA can efficiently
reduce the spatial redundancy and also offer a progressive transmission from the base mesh to the original one for static

Fig. 6. Prediction error distributions of Face model in terms of (a) FDC and (b) MDC.

Fig. 7. The encoding process of the proposed method using SWA and TWA techniques.

J.W. Cho et al. / Applied Mathematics and Computation 216 (2010) 410–425 415
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Fig. 8. Distributions of wavelet coefficients of the x-coordinate of the first base mesh vertex sequence of Face model using (a) Haar (2/2 tap), (b) Le Gall (5/3
tap) (c) Daubechies (9/7 tap) filters.

416 J.W. Cho et al. / Applied Mathematics and Computation 216 (2010) 410–425
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irregular meshes. Clearly, this scheme can be applied to each frame of 3-D mesh sequences, and therefore provide an adap-
tive transmission for mesh sequences when the bandwidth is not fixed because it can produce mesh sequences with various
spatial resolutions.

To reduce the temporal redundancy existing in the base mesh and spatial wavelet coefficients of mesh sequences, two
different techniques are used in our proposed methods. The first proposed method employs the MDC which determines
the optimal order of the differential encoder by evaluating the variance of the prediction error. The MDC provides simple
and adaptive differential coding technique. The second employs the TWA scheme. This approach allows spatio-temporal
multi-resolution coding in a single frame work. Although TWA was already used for geometry compression in temporal do-
main [10], there has been no attempt to use simultaneously both SWA and TWA. In the following sub-sections, we describe
our proposed methods in details.

4.1. The proposed compression method using SWA and MDC

Fig. 4 shows the encoding process of the proposed method using SWA and MDC techniques. We assume the original mesh
sequences are represented by integer coordinates. First, each mesh frame is transformed by the exact integer SWA [15]. Two
kinds of major information are obtained from this transform for each frame, namely the connectivity and the geometry. The
geometry information contains the coordinates of the base mesh and of wavelet coefficients corresponding to each spatial
resolution level. The connectivity is the topological connections of the vertices.

The second step is connectivity coding. The connectivity information obtained from the first step is entropy coded by an
arithmetic coder [22]. Note that this process is performed only for the first frame, because the mesh sequence has constant
connectivity. The reader can refer to [15] for more details of the connectivity coding.

The third step is geometry coding to reduce the temporal redundancy. Each coordinate of the base mesh vertices and of
the spatial wavelet coefficients is processed independently as 1-D signal with N samples along temporal direction. Here, N is
the number of frames. For a given rth base mesh vertex c0

r ¼ ðxr; yr ; zrÞ (c0
r 2 C0 for 1 6 r 6 R, and R is the number of base

mesh vertices), each coordinate is independently treated as ‘base mesh vertex sequence’: xrðnÞ; yrðnÞ, and zrðnÞ (for
1 6 n 6 N). Similarly, for a given sth wavelet coefficient of the jth spatial resolution level dj

s ¼ ðx
j
s; y

j
s; z

j
sÞ (dj

s 2 Dj for
1 6 s 6 S, and S is the number of wavelet coefficients in each spatial resolution level), each coordinate is independently trea-
ted as ‘spatial wavelet coefficient sequence’: xj

sðnÞ; yj
sðnÞ, and zj

sðnÞ. Consequently, the ‘temporal sequences’ consist of the base
mesh vertex sequences and the spatial wavelet coefficient sequences. Note that MDC is applied to each temporal sequence.

Before discussing MDC technique, the first order differential operation for the temporal sequences is formulated by

Dð1ÞuðnÞ ¼ uðnÞ � uðn� 1Þ;u 2 xr ; yr ; zr ; xj
s; y

j
s; z

j
s

� �
ð12Þ

Fig. 9. Original mesh sequences, (a)–(c) Cow and (d)–(f) Face models.
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The prediction errors obtained from Eq. (12) might still have some redundancy. Then, the remaining redundancy could be
reduced by repeatedly applying the differential operation to the prediction errors. This is named MDC and given by

DðmÞuðnÞ ¼ Dðm�1ÞuðnÞ � Dðm�1Þuðn� 1Þ ð13Þ

where mðm P 2Þ is the order of differential coding. Then this order can be easily determined by finding the optimal order
with smaller entropy via analyzing the variance of the prediction errors. In order to prove the correctness of our idea, we
consider that the input sequence is modeled as wide sense stationary markov process (WSSMP). As proved in Appendix
A, the first order predictor can be applied for a first order Markov process (a first order autoregressive process, AR(1)) with

Table 1
Lossless compression results of SWA + MDC method compared with SWA and SWA + FDC methods.

Method Model Bitrate (bits/vertex/frame)

SWA Cow 22.40
Face 30.04

SWA + FDC Cow 14.22
Face 11.49

SWA + MDC Cow 13.57
Face 10.52

Fig. 10. Distributions of practical optimal orders of the differential coder in SWA + MDC for (a) Cow and (b) Face models.
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a correlation coefficient existing in the range of 0:5 < q < 1. The more the input samples are correlated (pth order AR pro-
cess, AR(p)), the higher the efficiency of entropy coding is expected with higher order (pth order) differential coding.

To apply the MDC technique to practical 1-D temporal sequences, we use an iterative approach as follows.

(1) calculate the variance of input signal r2
u and let it be a reference variance such as r2

ref ¼ r2
u;

(2) initialize the parameter m as 1;
(3) perform the mth order differential operation via

DðmÞuðnÞ ¼
uðnÞ � uðn� 1Þ if m ¼ 1;

Dðm�1ÞuðnÞ � Dðm�1Þuðn� 1Þ if m P 2;

(

(4) calculate the variance of prediction errors through r2
DðmÞu

¼ 1=N
PN

n¼1ðD
ðmÞuðnÞ � lDðmÞuÞ

2, where l is mean value;
(5) if r2

DðmÞu
< r2

ref , increase mðm ¼ mþ 1Þ, replace r2
ref with r2

DðmÞu
and go back to (3);

(6) or else stop and encode the ðm� 1Þth order differential errors using the arithmetic coder.

We can automatically find the optimal order by using this iterative approach. Note that the entropy coding efficiency can
be estimated using the variance of the prediction errors, as mentioned in Section 3. Fig. 5 shows the variances of prediction
errors according to different orders of MDC. Here, the x-coordinate of the first base mesh vertex sequence,

Fig. 11. R-D curves of SWA, SWA + FDC and SWA + MDC methods for (a) Cow and (b) Face models.
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x1ðnÞð1 6 n 6 1024Þ, of Face model is shown for a practical example. In this case, the second order is selected for MDC, as its
corresponding variance is the smallest. Fig. 6 depicts the distributions of prediction error for the first order and the second
order differential coding. From this figure, we can easily estimate that MDC is more efficient than FDC. In terms of compu-
tational complexity, the mth order differential coding requires Nðm�1Þ additional add operation for each temporal sequence
compared to the ðm� 1Þth order differential coding, where Nðm�1Þ is the number of samples from the ðm� 1Þth order differ-
ential coding. Even though MDC costs slightly additional computational resources, this drawback could be overcome by
applying MDC to multiple temporal sequences in parallel via multi-core processor.

In the third step, the optimal order of each sequence should be also transmitted as side-information whose bitrate is given
by

dlog2omaxe � 3
N

ðbits=vertex=frameÞ ð14Þ

where omax is the maximum optimal order. Note that the side-information is very negligible.
The entropy coded connectivity and geometry including the side-information are finally merged into the compressed bit-

stream. Note that the transmitted bit-stream, in the decoder side, can be sequentially reconstructed from the coarsest signals
to finer ones with various spatial resolutions. We call this approach SWA + MDC method.

4.2. The proposed compression method using SWA and TWA

Fig. 7 shows the encoding process of the proposed compression method using SWA and TWA techniques. As the first two
steps of this encoding process are identical to those mentioned in Section 4.1, the peculiar steps of this scheme are described
in detail. Note that the same notations with the previous section are used for the sake of simplicity.

Up to the second step, each frame of the original mesh sequence is transformed by the exact integer SWA [15], and the
connectivity information for only the first frame is entropy coded by the arithmetic coder.

The third step performs the geometry coding to reduce the temporal redundancy. For geometry coding, the proposed
method applies TWA to the temporal sequences of the base mesh vertices (xrðnÞ; yrðnÞ, and zrðnÞ) and of the spatial wavelet
coefficients (xj

sðnÞ, yj
sðnÞ, and zj

sðnÞ). Similar to MDC, TWA can be also applied simultaneously to multiple temporal sequences
in parallel via multi-core processor, since each temporal sequence can be independently transformed. Note that the effi-
ciency of entropy coding depends on the performance of frequency decomposition according to temporal wavelet filter-
banks. Many analysis and synthesis filter-banks have been developed [20]. We consider three well-known filter-banks such
as Haar (2/2 tap) [23], Le Gall (5/3 tap) and Daubechies (9/7 tap) [24] filters. These filter-banks can be applied for lossless
compression of 3-D mesh sequences by implementing them in integer lifting form, because the input sequences have integer
coordinates. Fig. 8 shows the distributions of temporal wavelet coefficients. Here, the x-coordinate of the first base mesh ver-
tex sequence, x1ðnÞð1 6 n 6 1024Þ, of Face model is chosen for a practical example. From this figure, we can expect Le Gall
and Daubechies filters to be more efficient than Haar filter. We experimentally evaluate the coding efficiency according to
these filters in Section 5.2.

Table 2
The lossless compression results of SWA + TWA method compared with TWA scheme according to temporal wavelet decomposition levels and three temporal
wavelet filter-banks: Haar (2/2 tap), Le Gall (5/3 tap) and Daubechies (9/7 tap) filters.

# of TWA levels TWA filter Model Bitrate (bits/vertex/frame)
Method

TWA SWA + TWA

1 Haar Cow 32.78 18.21
Face 24.84 20.77

Le Gall Cow 30.19 16.39
Face 22.05 19.01

Daubeches Cow 29.93 16.53
Face 22.13 19.44

3 Haar Cow 30.60 16.30
Face 17.52 14.99

Le Gall Cow 27.16 13.92
Face 13.86 12.58

Daubechies Cow 26.49 13.93
Face 13.47 12.95

5 Haar Cow 30.43 16.11
Face 16.06 13.83

Le Gall Cow 27.08 13.79
Face 12.52 11.54

Daubechies Cow 26.34 13.73
Face 12.12 11.83

420 J.W. Cho et al. / Applied Mathematics and Computation 216 (2010) 410–425
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In the third step, the low and high frequency band signals obtained from both SWA and TWA are entropy coded by the
arithmetic coder.

The entropy coded connectivity and geometry information are finally merged into the compressed bit-stream. Note that
the transmitted bit-stream, in the decoder side, can be sequentially reconstructed from the coarsest signals to finer ones with
various spatial and temporal resolutions, simultaneously. We call the approach, SWA + TWA method.

5. Simulation results

Simulations are carried out on two 3-D irregular triangle mesh sequences, Cow (with 204 frames and 2904 vertices/
frame) and Face (with 10,002 frames and 539 vertices/frame). The number of vertices and their connectivity information
are fixed over all frames. To apply TWA to mesh sequences, the number of frames should be an integer power of two. There-
fore, we use only the first 128 and 1024 frames of Cow and Face, respectively. In the pre-processing step of SWA, each coor-
dinate is uniformly quantized, coded to 12 bits, and used for the original like as in [6]. Fig. 9 shows several frames of the
original mesh sequences as examples.

To measure the quality distortion between the original mesh sequence and decompressed one, we use Metro [25] which
provides the Hausdorff Distance (HD) between two static surfaces modeled by triangular meshes. It first evaluates two one-
sided distances, enðVn;V

0
nÞ and enðV0n;VnÞ (Vn and V0n represent the original and decompressed surfaces of meshes at the nth

frame, respectively). Note that there exist surfaces such that enðVn;V
0
nÞ–enðV0bfn;VnÞ. For that reason, the HD of nth mesh

frame, EnðVn;V
0
nÞ, is obtained by taking the maximum value of two one-sided distances:

Fig. 12. R-D curves of SWA + TWA method at different spatial resolutions where three temporal wavelet filter-banks are used for (a) Cow and (b) Face
models.
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EnðVn;V
0
nÞ ¼max en Vn;V

0
n

� �
; en V0n;Vn
� �� �

ð15Þ

The error metric is defined as the average of HD over all frames, called Average HD (AHD), EðVn;V
0
nÞ:

EðVn;V
0
nÞ ¼

1
N

XN�1

n¼0

EnðVn;V
0
nÞ ð16Þ

5.1. SWA + MDC method

To evaluate the coding efficiency of the proposed SWA + MDC method, we perform also two other methods, SWA method
and SWA + FDC method. Here, the SWA method does not consider the temporal redundancy. Table 1 shows the lossless com-
pression results. As shown in this table, both SWA + FDC and SWA + MDC methods achieve quite high compression perfor-
mance comparing to SWA method, because they exploit the temporal coherence. SWA + MDC method is more efficient than
SWA + FDC method. It shows that the first order of differential coder is not good enough to reduce the temporal redundancy.
Fig. 10 shows the distribution of practical optimal orders. Actually, 56% and 55% of the temporal sequences obtained from
SWA need second or third order differential coding in Cow and Face models, respectively. Although the proposed method
requires side-information to transmit the optimal order of each sequence, the amount is so small as to be negligible. In this
simulation, two bits per temporal sequence are assigned to transmit the order. Cow and Face models need 4:69� 10�2 and
5:86� 10�3ðbits=vertex=frameÞ for the side-information, respectively.

Fig. 13. R-D curves of SWA + TWA method at different spatio-temporal resolutions, where the temporal sequences are decomposed into five levels using
Daubechies filter-banks for (a) Cow and (b) Face models.
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The lossy-to-lossless compression performances according to various spatial resolutions are evaluated in terms of AHD
and bitrates. Fig. 11 depicts the Rate-Distortion (R-D) curves of SWA, SWA + FDC and SWA + MDC methods. Cow and Face
models are decomposed into 19 and 11 spatial levels. Here, we present the results of five highest resolution levels. Note that
the worst case is the base mesh sequences. As shown in Fig. 11, the proposed method enables to reconstruct the mesh se-
quences at various spatial resolutions. Similar to lossless compression results, SWA + MDC method has better coding effi-
ciency than the others.

5.2. SWA + TWA method

For the evaluation of SWA + TWA method, three different temporal wavelet filter-banks – Haar, Le Gall and Daubechies
filters – are applied to the temporal sequences obtained from SWA. Each temporal sequence is decomposed into several sub-
bands in the dyadic form using lifting scheme [26]. The lossless coding efficiency is evaluated according to different temporal
wavelet decomposition levels as shown in Table 2. For comparison, we also present the compression results of the method
which applies only TWA to original mesh sequences. We denote it TWA method. As shown in this table, TWA method has
poor performance. It means that the spatial redundancy should also be exploited. In particular, Cow model have relatively
high spatial redundancy. SWA + TWA method has lower bitrates than TWA method. The coding efficiency depends on the
kind of temporal wavelet filter-banks. Le Gall and Daubechies filter-banks are more efficient than Haar filter-banks. The bi-
trate decreases as a function of the decomposition level. However the performance of SWA + TWA is slightly lower than that
of SWA + MDC.

Lossy-to-lossless compression performances are evaluated by R-D curves. Fig. 12 shows the R-D curves according to dif-
ferent spatial resolutions and three temporal wavelet filter-banks. Here, temporal sequences are reconstructed in full tem-
poral resolution. As shown in Fig. 12, Le Gall and Daubechies filters have similar coding efficiency and are more efficient than
Haar filter at all spatial resolutions. Although SWA + TWA method has slightly lower performance than SWA + MDC, it pro-
vides both spatial and temporal scalability. Fig. 13 shows the R-D curves according to different spatio-temporal resolutions.
Here, temporal sequences are decomposed into five levels using Daubechies filter-banks. This figure demonstrates that we
can properly select the bitrates at various spatio-temporal resolutions. However, the bitrates should be carefully selected for
the mesh sequences having large movement such as Cow model.

6. Conclusions

In this paper, we proposed two geometry compression methods for irregular three-dimensional (3-D) mesh sequences
with constant connectivity. To reduce the spatial redundancy, both methods employ an exact integer spatial wavelet analysis
(SWA). Temporal redundancy is reduced by multi-order differential coding (MDC) and temporal wavelet analysis (TWA),
respectively, in two proposed methods. The method SWA + MDC offers spatial scalability and the method SWA + TWA pro-
vides spatio-temporal multi-resolution coding. In addition, both methods enable lossy-to-lossless compression in a single
framework. The method SWA + MDC has slightly better performances than SWA + TWA method in both lossless and lossy
compressions.
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Appendix A. In this Appendix A, we discuss the efficiency of the multi-order differential coding (MDC) according to the
correlation coefficient of input signal.

Let an input data sequence uðnÞ (for 1 6 n 6 N) be a wide sense stationary Markov process (WSSMP) with zero mean.
The mth order differential error sequence yðmÞðnÞ can be expressed by

yð1ÞðnÞ ¼ uðnÞ � uðn� 1Þ
yð2ÞðnÞ ¼ yð1ÞðnÞ � yð1Þðn� 1Þ

..

.

yðmÞðnÞ ¼ yðm�1ÞðnÞ � yðm�1Þðn� 1Þ ðA:1Þ

The impulse response of the differential coding system is defined as

hðnÞ ¼ dðnÞ � dðn� 1Þ ðA:2Þ

Using Eq. (A.1), the mth order differential error sequence can be rewritten as

yðmÞðnÞ ¼ hðnÞ � yðm�1ÞðnÞ ðA:3Þ
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where, � denotes the convolution operator.
The auto-correlation function of Eq. (A.3) can be calculated as

uyðmÞ ðkÞ ¼ uhðkÞ �uyðm�1Þ ðkÞ ðA:4Þ

where,

uhðkÞ ¼ hðkÞ � hð�kÞ and uyðm�1Þ ðkÞ ¼ E½yðm�1ÞðkÞyðm�1Þðnþ kÞ� ðA:5Þ

where, E½:� is expectation. According to Eqs. (A.2) and (A.5) is given by

uhðkÞ ¼ �dðk� 1Þ þ 2dðkÞ � dðkþ 1Þ ðA:6Þ

Considering the first order differential coders, from Eq. (A.4)

uyð1Þ ðkÞ ¼ �uuðk� 1Þ þ 2uuðkÞ �uuðkþ 1Þ ðA:7Þ

From Eq. (A.7):

uyð1Þ ð0Þ ¼ 2ðuuð0Þ �uuð1ÞÞ ðA:8Þ

where uuð0Þ ¼ r2
u and if we write the auto-correlation function of the input data sequence as uuðkÞ ¼ r2

uwðkÞ; ðwðkÞ < 1;8kÞ ,
uuð1Þ ¼ r2

uwð1Þ. Clearly, from Eq. (A.8), the output variance of the first order differential coder is

r2
yð1Þ ¼ uyð1Þ ð0Þ ¼ 2r2

uð1� wð1ÞÞ ðA:9Þ

If the input sequence uðnÞ is a first order stationary Markov process, uuðkÞ ¼ E½uðnÞuðnþ kÞ� ¼ r2
uwðkÞ with wðkÞ ¼ qjkj. Here,

qðjqj 6 1Þ is the correlation coefficient. Therefore, Eq. (A.9) can be rewritten as follow:

r2
yð1Þ ¼ uyð1Þ ð0Þ ¼ 2r2

uð1� qÞ ðA:10Þ

From Eq. (A.10), r2
yð1Þ < r2

u , if and only if 0:5 < q 6 1. Note that the WSSMP is a first order autoregressive (AR(1)) process of
the form:

uðnÞ ¼ quðn� 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
wðnÞ ðA:11Þ

where wðnÞ is a white noise with zero mean and variance r2
u.

Clearly, for an AR(1) process, the optimal predictor is:

y1
optðnÞ ¼ uðnÞ � quðn� 1Þ ðA:12Þ

Then, its output variance is

r2
y1

opt
¼ r2

uð1� qÞ2 ðA:13Þ

It follows that the output variance is more reduced for a predictor having larger correlation coefficient. However, the (opti-
mal) predictor requires both computational costs to calculate the correlation factor and side-information to be transmitted.

For an AR(1) process, it is easy to prove that the output variance of the MDC is reduced if

0:7752 < q 6 1 for the second order
0:9199 < q 6 1 for the third order
0:9740 < q 6 1 for the fourth order
� � �

Considering that the input sequence is modeled by a pth order AR process (AR(p)), the optimal differential coder has the or-
der p:

y1
optðnÞ ¼ uðnÞ �

Xp

k¼1

akuðn� 1Þ ðA:14Þ

Clearly, the proposed mth order MDC technique is a good alternative. In addition, the method requires just to evaluate the
optimal order of the differential coder in terms of output variance and to transmit it.
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