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This paper concerns the problem of delay-dependent stability criteria for neural networks
with interval time-varying delays. First, by constructing a newly augmented Lyapunov–
Krasovskii functional and combining with a reciprocally convex combination technique,
less conservative stability criterion is established in terms of linear matrix inequalities
(LMIs), which will be introduced in Theorem 1. Second, by taking different interval of inte-
gral terms of Lyapunov–Krasovskii functional utilized in Theorem 1, further improved sta-
bility criterion is proposed in Theorem 2. Third, a novel approach which divides the
bounding of activation function into two subinterval are proposed in Theorem 3 to reduce
the conservatism of stability criterion. Finally, through two well-known numerical exam-
ples used in other literature, it will be shown the proposed stability criteria achieves the
improvements over the existing ones and the effectiveness of the proposed idea.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Recently, neural networks have been found successful applications in various fields including image and signal process-
ing, pattern recognition, fault diagnosis, associative memories, fixed-point computations, combinatorial optimization, and
other scientific areas (for instance, see [1–4]). Since these applications heavily depend on the dynamic behavior of the equi-
librium point, the stability analysis of the equilibrium points of the designed network has been one of important issue. In the
implementation of neural networks, time delays frequently occur due to the finite switching speed of amplifies and may
cause instability or oscillation of neural networks. Therefore, considerable efforts have been done to asymptotic stability
analysis of neural networks with time-delays [5–36]. Especially, delay-dependent stability analysis has been investigated
by many researchers [18–36] since it is well known that delay-dependent stability criteria are generally less conservative
than delay-independent ones when the sizes of time-delays are small.

In the field of delay-dependent stability analysis, an important index for checking the conservatism is to find maximum
delay bounds such that the asymptotic stability of the designed network can be guaranteed for any admissible delays less
than maximum delay bounds. Thus, how to choose Lyapunov–Krasovskii functional and obtain an upper bound of time-
derivative of it play key roles to increase the feasible region of stability criteria.

Since Li et al. [21] pointed that the stability conditions are hardly improved by using the same Lyapunov–Krasovskii func-
tional, delay-partitioning approach, which was firstly introduced by Gu [38], has been attracted by many researchers. One of the
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main advantage of this approach is to estimate more tighter upper bounds than the the results without delay-partitioning ap-
proach. In this regard, with the idea of delay-partitioning, new exponential stability criterion for neural networks with constant
time-delay was investigated in [29]. Hu, Gao and Zheng [30] investigated the asymptotic stability for a class of cellular neural
networks with interval time-varying delays by introducing a novel Lyapunov functional which divide the lower bound of the
time-varying delay. The stability analysis using delay-partitioning was further investigated for stochastic Hopfield neural net-
works with constant time-delays and norm-bounded parameter uncertainties [31]. In [32], a piecewise delay method which
divides delay interval into two was proposed to reduce the conservatism of delay-dependent stability criteria for neural net-
works with interval time-varying delays. Recently, the idea of the proposed method [30] was extended to the problem of expo-
nential stability on stochastic neural networks with discrete interval and distributed delays [33]. Very recently, by employing
the improved delay-partitioning technique and general convex combination, delay-derivative-dependent stability criteria for
delayed neural networks with unbounded distributed delay were proposed in [35] and further improvement results on [35] are
in [36]. All of the works [29–36] mentioned focused on the application of delay-partitioning approach. However, as mentioned
in [37], the choice of activation functions influence the ability and performance of neural networks. Thus, the bounding prop-
erties of activation function is another important factor to determine the feasible region of stability criteria.

Motivated by this mentioned above,in this paper, three new delay-dependent stability criteria for neural networks with
interval time-varying delays will be proposed by employing different approaches. The contribution of this paper lies in three
aspects.

1. Unlike the method of [29–36], no delay-partitioning methods are utilized. Instead, by taking more information of states
and activation functions as augmented vectors, an augmented Lyapunov–Krasovskii’s functional is proposed. Then,
inspired by the work of [39–42], a sufficient condition such that the considered neural networks are asymptotically stable
is derived in terms of linear matrix inequalities (LMIs) which will be presented in Theorem 1 and 2.

2. A novel approach partitioning the bounding of activation function will be proposed for the first time. As a tradeoff
between time-consuming and improvement of the feasible region, the bounding of activation function is divided into
two subintervals.

Through two well-known numerical examples, it will be shown that in spite of no employing delay-partitioning approaches
the proposed stability criteria can provide larger delay bounds than the recent results in which delay-partitioning techniques
were utilized.Notation. Throughout this brief, Rn denotes n-dimensional Euclidean space, and Rn�m is the set of all n�m real
matrices. For symmetric matrices X and Y, the notation X > Y (respectively, X P Y) means that the matrix X � Y is positive
definite, (respectively, nonnegative). diagf� � �g denotes the block diagonal matrix. I represents the elements below the main
diagonal of a symmetric matrix. The subscript ‘T 0 denotes the transpose of the matrix.

2. Problem statement

Consider the following neural networks with interval time-varying delays:
_yðtÞ ¼ �AyðtÞ þW0gðyðtÞÞ þW1gðyðt � hðtÞÞÞ þ b; ð1Þ
where yðtÞ ¼ y1ðtÞ; . . . ; ynðtÞ½ �T 2 Rn is the neuron state vector, n denotes the number of neurons in a neural network,
gðyðtÞÞ ¼ g1ðy1ðtÞÞ; . . . ; gnðynðtÞÞ½ �T 2 Rn means the neuron activation function, gðyðt � hðtÞÞÞ ¼ g1ðy1ðt � hðtÞÞÞ; . . . ; gn½
ðynðt � hðtÞÞÞ�T 2 Rn, A ¼ diagfaig 2 Rn�n is a positive diagonal matrix, W0 ¼ ðw0

ijÞn�n 2 Rn�n and W1 ¼ ðw1
ijÞn�n 2 Rn�n are

the interconnection matrices representing the weight coefficients of the neurons, and b ¼ b1; b2; . . . ; bn½ �T 2 Rn represents a
constant input vector.

The delay, hðtÞ, is a time-varying continuous function satisfying
0 6 hL 6 hðtÞ 6 hU ;
_hðtÞ 6 hD; ð2Þ
where hL and hU are positive scalars and hD is any constant one.
The activation functions, giðyiðtÞÞ; i ¼ 1; . . . ;n, are assumed to bounded and hold the following condition:
k� 6
giðuÞ � giðvÞ

u� v 6 kþi ; u;v 2 R;

u – v; i ¼ 1; . . . ;n; ð3Þ
where k�i and kþi are constant values.
For simplicity, in stability analysis of the neural networks (1), the equilibrium point y� ¼ y�1; . . . ; y�n

� �T whose uniqueness
has been reported in [18] is shifted to the origin by utilizing the transformation xð�Þ ¼ yð�Þ � y�, which leads the system (1) to
the following form:
_xðtÞ ¼ �AxðtÞ þW0f ðxðtÞÞ þW1f ðxðt � hðtÞÞÞ; ð4Þ
where xðtÞ ¼ x1ðtÞ; . . . ; xnðtÞ½ �T 2 Rn is the state vector of the transformed system, f ðxðtÞÞ ¼ f 1ðx1ðtÞÞ; . . . ; f nðxnðtÞÞ½ �T and
f jðxjðtÞÞ ¼ gjðxjðtÞ þ y�j Þ � gjðy�j Þ with f jð0Þ ¼ 0ðj ¼ 1; . . . ; nÞ.



O.M. Kwon et al. / Applied Mathematics and Computation 218 (2012) 9953–9964 9955
It should be noted that the activation functions f ið�Þði ¼ 1; . . . ;nÞ satisfy the following condition:
k�i 6
f iðuÞ � f iðvÞ

u� v 6 kþi ;u; v 2 R;

u – v ; i ¼ 1; . . . ;n: ð5Þ
If v ¼ 0 in (5), then we have
k�i 6
f iðuÞ

u
6 kþi ; 8u – 0; i ¼ 1; . . . ;n; ð6Þ
which is equivalent to
f iðuÞ � k�i u
� �

f iðuÞ � kþi u
� �

6 0; i ¼ 1; . . . ;n: ð7Þ
The objective of this paper is to investigate the delay-dependent stability conditions of system (4) which will be conducted in
Section 3.

Before deriving our main results, we state the following lemmas.

Lemma 1. For any constant positive-definite matrix M 2 Rn�n and b 6 s 6 a, the following inequalities hold:
ða� bÞ
Z a

b

_xTðsÞM _xðsÞds P
Z a

b

_xðsÞds
� �T

M
Z a

b

_xðsÞds
� �

; ð8Þ

ða� bÞ2

2

Z a

b

Z a

s

_xTðuÞM _xðuÞduds P
Z a

b

Z a

s

_xðuÞduds
� �T

M
Z a

b

Z a

s

_xðuÞuds
� �

: ð9Þ
Proof. According to Jensen’s inequality in [43], one can obtain (8). Moreover, the following inequality holds
ða� sÞ
Z a

s

_xTðuÞM _xðuÞdu P
Z a

s

_xðuÞdu
� �T

M
Z a

s

_xðuÞdu
� �

: ð10Þ
By Schur Complements [44], Eq. (10) is equivalent to the following
R a
s

_xTðuÞM _xðuÞdu
R a

s
_xTðuÞduR a

s
_xðuÞdu ða� sÞM�1

" #
P 0: ð11Þ
Integration of (11) from b to a yields
R a
b

R a
s

_xTðuÞM _xðuÞduds
R a

b

R a
s

_xTðuÞdudsR a
b

R a
s

_xðuÞduds
R a

b ða� sÞM�1ds

" #
P 0: ð12Þ
Therefore, the inequality (12) is equivalent to the inequality (9) according to Schur Complements. This complete the
proof. h
Lemma 2 [45]. Let f 2 Rn; U ¼ UT 2 Rn�n, and B 2 Rm�n such that rankðBÞ < n. Then, the following statements are equivalent:

(1) fTUf < 0; Bf ¼ 0; f – 0,

(2) ðB?ÞTUB? < 0, where B? is a right orthogonal complement of B.

3. Main results

In this section, using augmented Lyapunov–Krasovskii functionals and some new approaches, novel delay-dependent sta-
bility criteria for systems (4) will be proposed. For the sake of simplicity of matrix representation, eiði ¼ 1; . . . ;17Þ 2 R17n�n

are defined as block entry matrices. (For example, eT
3 ¼ ½00 I 00000000000000�). The notations for some matrices are de-

fined as:
fðtÞ ¼ xTðtÞ xTðt � hðtÞÞ xT t � hLð Þ xT t � hUð Þ _xTðtÞ _xTðt � hLÞ _xTðt � hUÞ
Z t

t�hL

xTðsÞds
Z t�hL

t�hðtÞ
xTðsÞds

Z t�hðtÞ

t�hU

xTðsÞds

"

� f TðxðtÞÞ f Tðxðt � hðtÞÞÞ f Tðxðt � hLÞÞ f Tðxðt � hUÞÞ
Z t

t�hL

f TðxðsÞÞds
Z t�hL

t�hðtÞ
f TðxðsÞÞds

Z t�hðtÞ

t�hU

f TðxðsÞÞds

#
;
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aðtÞ ¼ xTðtÞ _xTðtÞ f TðxðtÞÞ
� �

; bðtÞ ¼ xTðtÞ f TðxðtÞÞ
� �

;

P1 ¼ e1 e3 e4 e8 e9 þ e10 e15 e16 þ e17½ �;

P2 ¼ e5 e6 e7 e1 � e3 e3 � e4 e11 � e13 e13 � e14½ �;

P3 ¼ e1 e5 e11½ �; P4 ¼ e3 e6 e13½ �; P5 ¼ e4 e7 e14½ �;

P6 ¼ e1 e11½ �; P7 ¼ e2 e12½ �; P8 ¼ e8 e1 � e3 e15½ �;

P9 ¼ e9 e3 � e2 e16 e10 e2 � e4 e17½ �;

C ¼ �A 0 0 0 �I 0 0 0 0 0 W0 W1 0 0 0 0 0½ �;

U ¼ e11KeT
5 þ e5KeT

11 þ e1KpDeT
5 þ e5DKpeT

1 � e11DeT
5 � e5DeT

11;

N¼ðh2
L=2Þ2e5Q 3eT

5�ðhLe1�e8ÞQ 3ðhLe1�e8ÞTþ ðh2
U�h2

L Þ=2
� �2

e5Q4eT
5�ððhU�hLÞe1 � e9 � e10ÞQ 4ððhU � hLÞe1 � e9 � e10ÞT ;

W ¼ hLe1Q 5eT
1 þ hLe5Q 6eT

5 þ ðhU � hLÞe1Q 7eT
1 þ ðhU � hLÞe5Q 8eT

5 þ e1P1eT
1 þ e3ð�P1 þ P2ÞeT

3 þ e2ð�P2 þ P3ÞeT
2 � e4P3eT

4;

� ¼ e1ðKp þ KmÞH1eT
11 þ e11H1ðKp þ KmÞeT

1 � 2e11H1eT
11 � 2e1KmH1KpeT

1 þ e2ðKp þ KmÞH2eT
12 þ e12H2ðKp þ KmÞeT

2

� 2e12H2eT
12 � 2e2KmH2KpeT

2 þ e3ðKp þ KmÞH3eT
13 þ e13H3ðKp þ KmÞeT

3 � 2e13H3eT
13 � 2e3KmH3KpeT

3

þ e4ðKp þ KmÞH4eT
14 þ e14H4ðKp þ KmÞeT

4 � 2e14H4eT
14 � 2e4KmH4KpeT

4;

R1 ¼ NþUþWþP1RPT
2 þP2RPT

1 þP3NPT
3 þP4 �N þMð ÞPT

4 �P5MPT
5 þP6GPT

6 � ð1� hDÞP7GPT
7

þ h2
L P3Q1P

T
3 �P8Q1P

T
8 þ ðhU � hLÞ2P3Q2P

T
3 �P9

Q2 S

I Q2

" #
PT

9: ð13Þ
Now, we have the following theorem.

Theorem 1. For given positive scalars hL and hU, any scalar hD, diagonal matrices Km ¼ diagfk�1 ; . . . ; k�n g and Kp ¼ diagfkþ1 ;
. . . ; kþn g, the system (1) is asymptotically stable for 0 6 hL 6 hðtÞ 6 hU and _hðtÞ 6 hD if there exist positive diagonal matrices

K ¼ diagfk1; . . . ; kng, D ¼ diagfd1; . . . ; dng, Hi ¼ diagfhi1; . . . ;hingði ¼ 1; . . . ;4Þ, positive definite matrices R ¼ Rij
� �

7�7 2 R7n�7n;

N ¼ Nij
� �

3�3 2 R3n�3n, M¼ Mij
� �

3�3 2 R3n�3n, G ¼ Gij
� �

2�2 2 R2n�2n; Q1 ¼ Q1;ij
� �

3�3 2 R3n�3n; Q2 ¼ Q2;ij
� �

3�3 2 R3n�3n;

Qiði ¼ 3; . . . ;8Þ, symmetric matrices Piði ¼ 1; . . . ;3Þ, and any matrix S ¼ Sij
� �

3�3 2 R3n�3n, satisfying the following LMIs:
ðC?ÞT R1 þ �f gC? < 0; ð14Þ

Q2 S
I Q2

" #
> 0; ð15Þ

Q 5 P1

I Q 6

" #
> 0; ð16Þ

Q 7 P2

I Q 8

" #
> 0; ð17Þ

Q 7 P3

I Q 8

" #
> 0; ð18Þ
where R1; � , and C are defined in (13), and C? is the right orthogonal complement of C.
Proof. For positive diagonal matrices K;D and positive definite matrices R;N , M;G;Q1;Q2;Q iði ¼ 3; . . . ;8Þ let us consider
the following Lyapunov–Krasovskii’s functional candidate V ¼

P6
i¼1Vi where
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V1 ¼

xðtÞ
xðt � hLÞ
xðt � hUÞR t
t�hL

xðsÞdsR t�hL
t�hU

xðsÞdsR t
t�hL

f ðxðsÞÞdsR t�hL
t�hU

f ðxðsÞÞds

266666666666664

377777777777775

T

R

xðtÞ
xðt � hLÞ
xðt � hUÞR t
t�hL

xðsÞdsR t�hL
t�hU

xðsÞdsR t
t�hL

f ðxðsÞÞdsR t�hL
t�hU

f ðxðsÞÞds

266666666666664

377777777777775
;

V2 ¼ 2
Pn
i¼1

Z xiðtÞ

0
kif iðsÞ þ diðkþi s� f iðsÞÞ
� 	

ds
� �

;

V3 ¼
Z t

t�hL

aTðsÞNaðsÞdsþ
Z t�hL

t�hU

aTðsÞMaðsÞdsþ
Z t

t�hðtÞ
bðsÞTGbðsÞds;

V4 ¼ hL

Z t

t�hL

Z t

s
aTðuÞQ1aðuÞdudsþ ðhU � hLÞ

Z t�hL

t�hU

Z t

s
aTðuÞQ2aðuÞduds;

V5 ¼ ðh2
L=2Þ

Z t

t�hL

Z t

s

Z t

u

_xTðvÞQ 3 _xðvÞdvduds;þððh2
U � h2

L Þ=2Þ
Z t�hL

t�hU

Z t

s

Z t

u

_xTðvÞQ4 _xðvÞdvduds;

V6 ¼
Z t

t�hL

Z t

s
xTðuÞQ 5xðuÞ þ _xTðuÞQ6 _xðuÞ
� 	

dudsþ
Z t�hL

t�hU

Z t

s
xTðuÞQ 7xðuÞ þ _xTðuÞQ 8 _xðuÞ
� 	

duds: ð19Þ
The time-derivative of V1 is calculated as
_V1 ¼ 2

xðtÞ
xðt � hLÞ
xðt � hUÞR t
t�hL

xðsÞdsR t�hL
t�hU

xðsÞdsR t
t�hL

f ðxðsÞÞdsR t�hL
t�hU

f ðxðsÞÞds

266666666666664

377777777777775

T

R

_xðtÞ
_xðt � hLÞ
_xðt � hUÞ

xðtÞ � xðt � hLÞ
xðt � hLÞ � xðt � hUÞ
f ðxðtÞÞ � f ðxðt � hLÞÞ

f ðxðt � hLÞÞ � f ðxðt � hUÞÞ

2666666666664

3777777777775
¼ fTðtÞ P1RPT

2 þP2RPT
1

� 	
fðtÞ: ð20Þ
By calculation of _V2, we have
_V2 ¼ 2f TðxðtÞÞK _xðtÞ þ 2 KpxðtÞ � f ðxðtÞÞ
� �T

D _xðtÞ ¼ fTðtÞUfðtÞ: ð21Þ
With the condition _hðtÞ 6 hD, an upper bound of V3 is obtained as
_V3 6 aTðtÞNaðtÞ � aTðt � hLÞNaðt � hLÞ þ aTðt � hLÞMaðt � hLÞ � aTðt � hUÞMaðt � hUÞ þ bTðtÞGbðtÞ
�ð1�hDÞbTðt�hðtÞÞGbðt�hðtÞÞ¼fTðtÞ P3NPT

3 þP4 �N þMð ÞPT
4 �P5MPT

5 þP6GPT
6�ð1�hDÞP7GPT

7

� �
fðtÞ: ð22Þ
By use of Lemma 1 and Theorem 1 in [40], an estimation of _V4 is
_V4 ¼ h2
La

TðtÞQ1aðtÞ � hL

Z t

t�hL

aTðsÞQ1aðsÞdsþ ðhU � hLÞ2aTðtÞQ2aðtÞ � ðhU � hLÞ
Z t�hL

t�hðtÞ
aTðsÞQ2aðsÞds

� ðhU � hLÞ
Z t�hðtÞ

t�hU

aTðsÞQ2aðsÞds

6 h2
La

TðtÞQ1aðtÞ �
Z t

t�hL

aðsÞds
� �T

Q1

Z t

t�hL

aðsÞds
� �

þ ðhU � hLÞ2aTðtÞQ2aðtÞ

� hU � hL

hðtÞ � hL

� � Z t�hL

t�hðtÞ
aðsÞds

 !T

Q2

Z t�hL

t�hðtÞ
aðsÞds

 !
� hU � hL

hU � hðtÞ

� � Z t�hðtÞ

t�hU

aðsÞds

 !T

Q2

Z t�hðtÞ

t�hU

aðsÞds

 !

6 h2
La

TðtÞQ1aðtÞ �
Z t

t�hL

aðsÞds
� �T

Q1

Z t

t�hL

aðsÞds
� �

þ ðhU � hLÞ2aTðtÞQ2aðtÞ

�
R t�hL

t�hðtÞ aðsÞdsR t�hðtÞ
t�hU

aðsÞds

24 35T

Q2 S
I Q2


 � R t�hL
t�hðtÞ aðsÞdsR t�hðtÞ
t�hU

aðsÞds

24 35
¼ fTðtÞ h2

L P3Q1P
T
3 �P8Q1P

T
8 þ ðhU � hLÞ2P3Q2P

T
3 �P9

Q2 S
I Q2


 �
PT

9

� 

fðtÞ: ð23Þ
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By Lemma 2, _V5 is bounded as
_V5 ¼ ðh2
L=2Þ2 _xTðtÞQ 3 _xðtÞ � ðh2

L=2Þ
Z t

t�hL

Z t

s

_xTðuÞQ 3 _xðuÞdudsþ ððh2
U � h2

L Þ=2Þ2 _xTðtÞQ 4 _xðtÞ

� ðh2
U � h2

L Þ=2
� �Z t�hL

t�hU

Z t

s

_xTðuÞQ 4 _xðuÞduds

6 ðh2
L=2Þ2 _xTðtÞQ3 _xðtÞ �

Z t

t�hL

Z t

s

_xðuÞduds
� �T

Q3

Z t

t�hL

Z t

s

_xðuÞduds
� �

þ ððh2
U � h2

L Þ=2Þ2 _xTðtÞQ 4 _xðtÞ �
Z t�hL

t�hU

Z t

s

_xðuÞduds

 !T

Q4

Z t�hL

t�hU

Z t

s

_xðuÞduds

 !
¼ fTðtÞNfðtÞ: ð24Þ
Calculation of _V6 leads to
_V6 ¼ hLxTðtÞQ 5xðtÞ �
Z t

t�hL

xTðsÞQ 5xðsÞdsþ hL _xTðtÞQ 6 _xðtÞ �
Z t

t�hL

_xTðsÞQ 6 _xðsÞdsþ ðhU � hLÞxTðtÞQ7xðtÞ

�
Z t�hL

t�hU

xTðsÞQ 7xðsÞdsþ ðhU � hLÞ _xTðtÞQ 8 _xðtÞ �
Z t�hL

t�hU

_xTðsÞQ 8 _xðsÞds: ð25Þ
Inspired by the work of [42], the following three zero equality with any symmetric matrices P1; P2, and P2 are considered:
0 ¼ xTðtÞP1xðtÞ � xTðt � hLÞP1xðt � hLÞ � 2
Z t

t�hL

xTðsÞP1 _xðsÞds;

0 ¼ xTðt � hLÞP2xðt � hLÞ � xTðt � hðtÞÞP2xðt � hðtÞÞ � 2
Z t�hL

t�hðtÞ
xTðsÞP2 _xðsÞds;

0 ¼ xTðt � hðtÞÞP3xðt � hðtÞÞ � xTðt � hUÞP3xðt � hUÞ � 2
Z t�hðtÞ

t�hU

xTðsÞP3 _xðsÞds: ð26Þ
With the above three zero equalities, an upper bound of _V6 is
_V66fTðtÞWfðtÞ�
Z t

t�hL

xðsÞ
_xðsÞ


 �T Q5 P1

I Q 6


 �
xðsÞ
_xðsÞ


 �
ds�

Z t�hL

t�hðtÞ

xðsÞ
_xðsÞ


 �T Q7 P2

I Q 8


 �
xðsÞ
_xðsÞ


 �
ds

�
Z t�hðtÞ

t�hU

xðsÞ
_xðsÞ


 �T Q7 P3

I Q 8


 �
xðsÞ
_xðsÞ


 �
ds: ð27Þ
From (7), for any positive diagonal matrices H1 ¼ diagfh11; . . . ;h1ng; H2 ¼ diagfh21; . . . ;h2ng; H3 ¼ diagfh31; . . . ;h3ng, and
H4 ¼ diagfh41; . . . ; h4ng, the following inequality holds
0 6 �2
Pn
i¼1

h1i f iðxiðtÞÞ � k�i xiðtÞ
� �

f iðxiðtÞÞ � kþi xiðtÞ
� �

� 2
Pn
i¼1

h2i f iðxiðt � hðtÞÞÞ � k�i xiðt � hðtÞÞ
� �

� f iðxiðt � hðtÞÞÞ � kþi xiðt � hðtÞÞ
� �

� 2
Pn
i¼1

h3i f iðxiðt � hLÞÞ � k�i xiðt � hLÞ
� �

f iðxiðt � hLÞÞ � kþi xiðt � hLÞ
� �

� 2
Pn
i¼1

h4i f iðxiðt � hUÞÞ � k�i xiðt � hUÞ
� �

f iðxiðt � hUÞÞ � kþi xiðt � hUÞ
� �

¼ fTðtÞ� fðtÞ: ð28Þ
From Eqs. (19)–(28) and by application of S-procedure [44], if Eqs. (16)–(18) hold, then an upper bound of _V is
_V 6 fTðtÞ R1 þ �f gfðtÞ; ð29Þ
where R1 are defined in (13).
By Lemma 2, fTðtÞðR1 þ � ÞfðtÞ < 0 with 0 ¼ CfðtÞ is equivalent to ðC?ÞTðR1 þ � ÞC? < 0. Therefore, if LMIs (14)–(18) hold,

then the neural networks (4) is asymptotically stable. This completes our proof. h
Remark 1. In Theorem 1, the augmented vector fðtÞ has integrating terms of activation function f ðxðtÞÞ which areR t
t�hL

f ðxðsÞÞds;
R t�hL

t�hðtÞ f ðxðsÞÞds and
R t�hðtÞ

t�hU
f ðxðsÞÞds. By taking these integral terms as augmented vector which has not been con-

sidered in other literature, more past history of f ðxðtÞÞ can be utilized, which may lead less conservative results.
Remark 2. Recently, the reciprocally convex optimization technique to reduce the conservatism of stability criteria for sys-
tems with time-varying delays was proposed in [40]. Motivated by this work, the proposed method of [40] was utilized in Eq.
(23). However, an augmented vector with

R t�hL
t�hðtÞ xðsÞds;

R t�hðtÞ
t�hU

xðsÞds,
R t�hL

t�hðtÞ f ðxðsÞÞds, and
R t�hðtÞ

t�hU
f ðxðsÞÞds was used in Theorem 1,

which is different from the method of [40].
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Remark 3. In the proposed Lyapunov–Krasovskii’s functional of Theorem 1, the terms ðhU � hLÞ
R t�hL

t�hU

R t
s aTðuÞQ2aðuÞduds,

ððh2
U � h2

L Þ=2Þ
R t�hL

t�hU

R t
s

R t
u

_xTðvÞQ 4 _xðvÞdvduds, and
R t�hL

t�hU

R t
s ðxTðuÞQ7xðuÞ þ _xTðuÞQ 8 _xðuÞÞduds were proposed at each V4;V5, and

V6, respectively. In double integral terms, we have t � hU 6 s 6 t � hL and s 6 u 6 t. Also, in triple integral terms, one can
confirm t � hU 6 s 6 t � hL; s 6 u 6 t, and u 6 v 6 t. Since the parameter s has the integral interval from t � hU to t � hL, it
may be effective that the maximum values of u and v are changed as t � hL instead of t. With this regard, in Theorem 2,
the terms ðhU � hLÞ

R t�hL
t�hU

R t�hL
s aTðuÞQ2aðuÞduds, ððhU � hLÞ2=2Þ

R t�hL
t�hU

R t�hL
s

R t�hL
u

_xTðvÞQ4 _xðvÞdvduds, and
R t�hL

t�hU

R t�hL
s ðxTðuÞ

Q 7xðuÞ þ _xTðuÞQ8 _xðuÞÞduds will proposed.
Next, based on the results of Theorem 1 and Remark 3, improved stability criteria for system (1) will be introduced as

Theorem 2 by taking different interval of integral terms of Viði ¼ 4;5;6Þ. The notations for some matrices which will be
utilized in Theorem 2 are defined as
Pa ¼ e3 e6 e13½ �;

eN ¼ ðh2
L=2Þ2e5Q3eT

5 � ðhLe1 � e8ÞQ3ðhLe1 � e8ÞT þ ðhU � hLÞ2=2
� �2

e6Q 4eT
6 � ððhU � hLÞe3 � e9 � e10ÞQ 4ððhU � hLÞe3 � e9 � e10ÞT ;eW ¼ hLe1Q 5eT

1 þ hLe5Q6eT
5 þ ðhU � hLÞe3Q 7eT

3 þ ðhU � hLÞe6Q8eT
6 þ e1P1eT

1 þ e3ð�P1 þ P2ÞeT
3 þ e2ð�P2 þ P3ÞeT

2 � e4P3eT
4;

R2 ¼ eN þUþ eW þP1RPT
2 þP2RPT

1 þP3NPT
3 þP4 �N þMð ÞPT

4 �P5MPT
5 þP6GPT

6 � ð1� hDÞP7GPT
7 þ h2

L P3Q1P
T
3

�P8Q1P
T
8 þ ðhU � hLÞ2PaQ2P

T
a �P9

Q2 S
I Q2


 �
PT

9: ð30Þ
and other notations expressed in R2 are the same ones as in Eq. (13).
Now, we have the following theorem.

Theorem 2. For given positive scalars hL and hU, any scalar hD, diagonal matrices Km ¼ diagfk�1 ; . . . ; k�n g and Kp ¼ diagfkþ1 ;
. . . ; kþn g, the system (1) is asymptotically stable for 0 6 hL 6 hðtÞ 6 hU and _hðtÞ 6 hD if there exist positive diagonal matrices
K ¼ diagfk1; . . . ; kng, D ¼ diagfd1; . . . ; dng, Hi ¼ diagfhi1; . . . ;hingði ¼ 1; . . . ;4Þ, positive definite matrices R ¼ Rij

� �
7�7

2 R7n�7n; N ¼ Nij
� �

3�3 2 R3n�3n, M¼ Mij
� �

3�3 2 R3n�3n, G ¼ Gij
� �

2�2 2 R2n�2n; Q1 ¼ Q1;ij
� �

3�3 2 R3n�3n; Q2 ¼ Q2;ij
� �

3�3

2 R3n�3n; Qiði ¼ 3; . . . ;8Þ, symmetric matrices Piði ¼ 1; . . . ;3Þ, and any matrix S ¼ Sij
� �

3�3 2 R3n�3n, satisfying the following LMIs:
ðC?ÞT R2 þ �f gC? < 0; ð31Þ
Q2 S
I Q2


 �
> 0; ð32Þ

Q 5 P1

I Q 6


 �
> 0; ð33Þ

Q 7 P2

I Q 8


 �
> 0; ð34Þ

Q 7 P3

I Q 8


 �
> 0; ð35Þ
where R2 was defined in Eq. (30).
Proof. For positive diagonal matrices K;D and positive definite matrices R;N , M;G;Q1;Q2;Q iði ¼ 3; . . . ;8Þ let us consider
the following Lyapunov–Krasovskii’s functional candidate V ¼

P6
i¼1Vi where
V4 ¼ hL

Z t

t�hL

Z t

s
aTðuÞQ1aðuÞdudsþ ðhU � hLÞ

Z t�hL

t�hU

Z t�hL

s
aTðuÞQ2aðuÞduds;

V5 ¼ ðh2
L=2Þ

Z t

t�hL

Z t

s

Z t

u

_xTðvÞQ 3 _xðvÞdvduds;þððhU � hLÞ2=2Þ
Z t�hL

t�hU

Z t�hL

s

Z t�hL

u

_xTðvÞQ 4 _xðvÞdvduds;

V6 ¼
Z t

t�hL

Z t

s
xTðuÞQ 5xðuÞ þ _xTðuÞQ6 _xðuÞ
� 	

dudsþ
Z t�hL

t�hU

Z t�hL

s
xTðuÞQ 7xðuÞ þ _xTðuÞQ 8 _xðuÞ
� 	

duds; ð36Þ
and Viði ¼ 1;2;3Þ are the same ones as in Eq. (19).
By using the similar method presented at Eq. (23), an upper bound of time-derivative of _V4 can be
_V4 6 h2
La

TðtÞQ1aðtÞ � hL

Z t

t�hL

aTðsÞQ1aðsÞdsþ ðhU � hLÞ2aTðt � hLÞQ2aðt � hLÞ

� ðhU � hLÞ
Z t�hL

t�hðtÞ
aTðsÞQ2aðsÞds� ðhU � hLÞ

Z t�hðtÞ

t�hU

aTðsÞQ2aðsÞds

6 fTðtÞ h2
LP3Q1P

T
3 �P8Q1P

T
8 þ ðhU � hLÞ2PaQ2P

T
a�P9

Q2 S
I Q2


 �
PT

9



fðtÞ:

�
ð37Þ
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By calculating _V5, we have
_V5 ¼ ðh2
L=2Þ2 _xTðtÞQ 3 _xðtÞ � ðh2

L=2Þ
Z t

t�hL

Z t

s

_xTðuÞQ 3 _xðuÞdudsþ ððhU � hLÞ2=2Þ2 _xTðt � hLÞQ4 _xðt � hLÞ

� ðhU � hLÞ2=2
� �Z t�hL

t�hU

Z t�hL

s

_xTðuÞQ 4 _xðuÞduds

6 ðh2
L=2Þ2 _xTðtÞQ3 _xðtÞ �

Z t

t�hL

Z t

s

_xðuÞduds
� �T

Q3

Z t

t�hL

Z t

s

_xðuÞduds
� �

þ ððhU � hLÞ2=2Þ2 _xTðt � hLÞQ 4 _xðt � hLÞ

�
Z t�hL

t�hU

Z t�hL

s

_xðuÞduds

 !T

Q 4

Z t�hL

t�hU

Z t�hL

s

_xðuÞduds

 !
¼ fTðtÞeNfðtÞ: ð38Þ
From the result of _V6, one can obtain
_V6 ¼ hLxTðtÞQ 5xðtÞ �
Z t

t�hL

xTðsÞQ 5xðsÞdsþ hL _xTðtÞQ 6 _xðtÞ �
Z t

t�hL

_xTðsÞQ 6 _xðsÞdsþ ðhU � hLÞxTðt � hLÞQ 7xðt � hLÞ

�
Z t�hL

t�hU

xTðsÞQ 7xðsÞdsþ ðhU � hLÞ _xTðt � hLÞQ 8 _xðt � hLÞ �
Z t�hL

t�hU

_xTðsÞQ 8 _xðsÞds: ð39Þ
With the obtained results (37)–(39), the other procedure is straightforward from the proof of Theorem 1, so we omit it. h
Remark 4. Since a delay-partitioning idea was firstly proposed in [38], it is well recognized that delay-partitioning approach
can increase the feasible region of stability criteria owing to the fact that this method can obtain more tighter upper bounds
obtained by calculating the time-derivative of Lyapunov–Krasovskii functional, which leads to less conservative results.
However, when the number of delay-partitioning number increases, the matrix formulation becomes more complex and
the computational burden and time-consuming grow bigger. Noticing this fact mentioned above, in Theorem 3, the bounding
of activation function k�i 6

fiðuÞ
u 6 kþi will be divided into two subintervals such as k�i 6

fiðuÞ
u 6 ðk

�
i þ kþi Þ=2 and

ðk�i þ kþi Þ=2 6 fiðuÞ
u 6 kþ instead of no using delay-partitioning approach. To the authors’ best knowledge, this approach has

not been proposed. Through two numerical examples, it will be shown Theorem 3 significantly improves the feasible region
of stability criterion comparing with those of Theorem 2.

Finally, based on the results of Theorem 2 and Remark 4 mentioned above, a novel approach for delay-range-dependent
stability criterion for system (4) will be introduced. For the sake of simplicity in matrix representation, the notations for
some matrices of Theorem 3 are defined as
� a ¼ e1ðð3Km þ KpÞ=2ÞH1eT
11 þ e11H1ðð3Km þ KpÞ=2ÞeT

1 � 2e11H1eT
11 � 2e1KmH1ððKmþ KpÞ=2ÞeT

1

þ e2ðð3Km þ KpÞ=2ÞH2eT
12 þ e12H2ðð3Km þ KpÞ=2ÞeT

2 � 2e12H2eT
12 � 2e2KmH2ððKmþ KpÞ=2ÞeT

2

þ e3ðð3Km þ KpÞ=2ÞH3eT
13 þ e13H3ðð3Km þ KpÞ=2ÞeT

3 � 2e13H3eT
13 � 2e3KmH3ððKmþ KpÞ=2ÞeT

3

þ e4ðð3Km þ KpÞ=2ÞH4eT
14 þ e14H4ðð3Km þ KpÞ=2ÞeT

4 � 2e14H4eT
14 � 2e4KmH4ððKmþ KpÞ=2ÞeT

4;

� b ¼ e1ððKm þ 3KpÞ=2ÞH5eT
11 þ e11H5ððKm þ 3KpÞ=2ÞeT

1 � 2e11H5eT
11 � 2e1ððKmþ KpÞ=2ÞH5KpeT

1

þ e2ððKm þ 3KpÞ=2ÞH6eT
12 þ e12H6ððKm þ 3KpÞ=2ÞeT

2 � 2e12H6eT
12 � 2e2ððKmþ KpÞ=2ÞH6KpeT

2

þ e3ððKm þ 3KpÞ=2ÞH7eT
13 þ e13H7ððKm þ 3KpÞ=2ÞeT

3 � 2e13H7eT
13 � 2e3ððKmþ KpÞ=2ÞH7KpeT

3

þ e4ððKm þ 3KpÞ=2ÞH8eT
14 þ e14H8ððKm þ 3KpÞ=2ÞeT

4 � 2e14H8eT
14 � 2e4ððKmþ KpÞ=2ÞH8KpeT

4: ð40Þ
Now, we have the following theorem.

Theorem 3. For given positive scalars hL and hU, any scalar hD, diagonal matrices Km ¼ diagfk�1 ; . . . ; k�n gand Kp ¼ diagfkþ1 ; . . . ; kþn g,
the system (1) is asymptotically stable for 0 6 hL 6 hðtÞ 6 hU and _hðtÞ 6 hD if there exist positive diagonal matrices
K ¼ diagfk1; . . . ; kng, D ¼ diagfd1; . . . ; dng, Hi ¼ diagfhi1; . . . ;hingði ¼ 1; . . . ;8Þ, positive definite matrices R ¼
Rij
� �

7�7 2 R7n�7n; N ¼ Nij
� �

3�3 2 R3n�3n, M¼ Mij
� �

3�3 2 R3n�3n, G ¼ Gij
� �

2�2 2 R2n�2n; Q1 ¼ Q1;ij
� �

3�3 2 R3n�3n;Q2 ¼
Q2;ij
� �

3�3 2 R3n�3n; Qiði ¼ 3; . . . ;8Þ, symmetric matrices Piði ¼ 1; . . . ;3Þ, and any matrix S ¼ Sij
� �

3�3 2 R3n�3n, satisfying the
following LMIs:
ðC?ÞT R2 þ � af gC? < 0; ð41Þ
ðC?ÞT R2 þ � bf gC? < 0; ð42Þ
Q2 S
I Q2


 �
> 0; ð43Þ
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Q 5 P1

I Q 6


 �
> 0; ð44Þ

Q 7 P2

I Q 8


 �
> 0; ð45Þ

Q 7 P3

I Q 8


 �
> 0; ð46Þ
where R2, is defined in (30), � a, and � b are in Eq. (40).
Proof. For positive diagonal matrices K;D and positive definite atrices R;N ,M;G;Q1;Q2;Q iði ¼ 3; . . . ;8Þ let us consider the
same Lyapunov–Krasovskii functional (36) proposed in Theorem 2.

Case I: k�i 6
fiðuÞ

u 6 ðk
�
i þ kþi Þ=2. From (7), for any positive diagonal matrices H1 ¼ diagfh11; . . . ;h1ng; H2 ¼ diagfh21; . . . ;h2ng;

H3 ¼ diagfh31; . . . ;h3ng, and H4 ¼ diagfh41; . . . ;h4ng, the following inequality holds
0 6 �2
Pn
i¼1

h1i fiðxiðtÞÞ � k�i xiðtÞ
� �

fiðxiðtÞÞ � ððk�i þ kþi Þ=2ÞxiðtÞ
� �

� 2
Pn
i¼1

h2i fiðxiðt � hðtÞÞÞ � k�i xiðt � hðtÞÞ
� �

fiðxiðt � hðtÞÞÞ � ððk�i þ kþi Þ=2Þxiðt � hðtÞÞ
� �

� 2
Pn
i¼1

h3i fiðxiðt � hLÞÞ � k�i xiðt � hLÞ
� �

fiðxiðt � hLÞÞ � ððk�i þ kþi Þ=2Þxiðt � hLÞ
� �

� 2
Pn
i¼1

h4i fiðxiðt � hUÞÞ � k�i xiðt � hUÞ
� �

fiðxiðt � hUÞÞ � ððk�i þ kþi Þ=2Þxiðt � hUÞ
� �

¼ fTðtÞ� afðtÞ: ð47Þ
Then, from the proof of Theorem 1 and 2, when k�i 6
fiðuÞ

u 6 ðk
�
i þ kþi Þ=2, an upper bound of _V can be
_V 6 fTðtÞ R2 þ � af gfðtÞ ð48Þ
with 0 ¼ CfðtÞ. Therefore, from Lemma 2 and S-procedure [44], if (41), (42), (42), (43, (46) hold, then system (4) is asymp-
totically stable for 0 6 hL 6 hðtÞ 6 hU ;

_hðtÞ 6 hD, and k�i 6
fiðuÞ

u 6 ðk
�
i þ kþi Þ=2.

Case II: ðk�i þ kþi Þ=2 6 fiðuÞ
u 6 kþi .

Note that the condition kþi =2 6 fiðuÞ
u 6 kþi is equivalent to
fiðuÞ � ððk�i þ kþi Þ=2Þu
� �

fiðuÞ � kþi u
� �

< 0; i ¼ 1; . . . ;n: ð49Þ
From (49), for any positive diagonal matrices H5 ¼ diagfh51; . . . ;h5ng; H6 ¼ diagfh61; . . . ;h6ng; H7 ¼ diagfh71; . . . ;h7ng, and
H8 ¼ diagfh81; . . . ;h8ng, the following inequality holds
0 6 �2
Pn
i¼1

h5i fiðxiðtÞÞ � ððk�i þ kþi Þ=2ÞxiðtÞ
� �

fiðxiðtÞÞ � kþi xiðtÞ
� �

� 2
Pn
i¼1

h6i fiðxiðt � hðtÞÞÞ � ððk�i þ kþi Þ=2Þxiðt � hðtÞÞ
� �

fiðxiðt � hðtÞÞÞ � kþi xiðt � hðtÞÞ
� �

� 2
Pn
i¼1

h7i fiðxiðt � hLÞÞ � ððk�i þ kþi Þ=2Þxiðt � hLÞ
� �

fiðxiðt � hLÞÞ � kþi xiðt � hLÞ
� �

� 2
Pn
i¼1

h8i fiðxiðt � hUÞÞ � ððk�i þ kþi Þ=2Þxiðt � hUÞ
� �

fiðxiðt � hUÞÞ � kþi xiðt � hUÞ
� �

¼ fTðtÞ� bfðtÞ: ð50Þ
Therefore, from Lemma 2 and S-procedure [44], if (42), (42), (42), (43, (46) hold, then system (4) is asymptotically stable for
0 6 hL 6 hðtÞ 6 hU ;

_hðtÞ 6 hD, and ðk�i þ kþi Þ=2 6 fiðuÞ
u 6 kþi . Thus, the feasibility of (42), (42), (42), (43, (46) means that system

(4) is asymptotically stable for 0 6 hL 6 hðtÞ 6 hU ;
_hðtÞ 6 hD, and k�i 6

fiðuÞ
u 6 kþi . This completes the proof of Theorem 3. h
Remark 5. When the information of an upper bound of _hðtÞ is unknown or larger than one, Theorem 1, 2 also can provide
delay-dependent stability criteria for (1) by letting G ¼ 0.
4. Numerical examples

Example 1. Consider the neural networks (4) where



Table 1
Delay bounds hU with hL ¼ 3 and different hD (Example 1).

hD 0.1 0.5 0.9 Unknown (or hD P 1)

[30]ðm ¼ 2Þ� 3.65 3.32 3.26 3.24
[30]ðm ¼ 4Þ� 3.71 3.36 3.29 3.28
[36]ðm ¼ 2Þ� 3.78 3.45 3.39 3.38
Theorem 1 4.0071 3.3960 3.3033 3.2827
Theorem 2 4.0130 3.4470 3.3403 3.3196
Theorem 3 4.1967 3.6246 3.5961 3.5952

⁄ m is delay-partitioning number.
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A ¼

1:2769 0 0 0

0 0:6231 0 0

0 0 0:9230 0

0 0 0 0:4480

266664
377775;

W0 ¼

�0:0373 0:4852 �0:3351 0:2336

�1:6033 0:5988 �0:3224 1:2352

0:3394 �0:0860 �0:3824 �0:5785

�0:1311 0:3253 �0:9534 �0:5015

266664
377775;

W1 ¼

0:8674 �1:2405 �0:5325 0:0220

0:0474 �0:9164 0:0360 0:9816

1:8495 2:6117 �0:3788 0:8428

�2:0413 0:5179 1:1734 �0:2775

266664
377775;

Kp ¼ diagf0:1137; 0:1279;0:7994;0:2368g: ð51Þ
For this system, when hL ¼ 3, by dividing the lower bound of the time-varying delay, improved delay-dependent stability
criterion was proposed in [30]. Very recently, with the consideration of the lower bound of delay derivative and delay-
partitioning technique, less conservative results were presented in [36]. Table 1 gives the comparison results on the maxi-
mum delay bound allowed via the methods in recent works and our new study. From Table 1, it can be seen that Theorem 2
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Fig. 1. State trajectories of system (51) when hðtÞ ¼ 3þ 0:59jsinð10tÞj.



Table 2
Delay bounds hU with different hD (Example 2).

hD ¼ 0:8 hD ¼ 0:9 Unknown hD(or hD P 1)

[23] hL ¼ 1 2.5967 2.0443 1.9621
[32] 3.8359 2.9234 2.7532
Theorem 1 4.8278 3.6889 3.2975
Theorem 2 4.8278 3.6889 3.2975
Theorem 3 4.8668 3.8047 3.6001

[23] hL ¼ 100 101.5946 101.0443 100.9621
[32] 102.8335 101.9234 101.7532
Theorem 1 103.7774 102.6887 102.2975
Theorem 2 103.7776 102.6887 102.2975
Theorem 3 103.8101 102.8047 102.6001

O.M. Kwon et al. / Applied Mathematics and Computation 218 (2012) 9953–9964 9963
provides larger delay bounds than those of Theorem 1, which supports the effectiveness of the proposed idea introduced in
Theorem 2. Note that Theorem 1 and 2 give larger delay bounds than those of [30] but fails the improvement of the feasible
region when hD is 0.5, 0.9, and unknown comparing with the results of [36]. However, Theorem 3 significantly reduces the
conservatism of Theorem 1 and 2 and provides larger delay bounds than the existing ones of [36] in spite of no utilizing
delay-partitioning techniques. To confirm the obtained results of Theorem 3 when hðtÞ is unknown, the state trajectories
of system (51) when hðtÞ ¼ 3þ 0:59jsinð10tÞj are shown in Fig. 1.
Example 2. Consider the neural networks (4) with the parameters
A ¼
2 0
0 2


 �
; W0 ¼

1 1
�1 �1


 �
;

W1 ¼
0:88 1

1 1


 �
; Kp ¼ diagf0:4;0:8g;

Km ¼ diagf0;0g: ð52Þ
For this system, when hL ¼ 1 and hL ¼ 100, the maximum delay bounds obtained by the methods of [23,32] for various con-
ditions of hD are listed in Table 2. In [32], by dividing delay interval into two and employing different free-weighting matrices
at each interval, improved maximum delay bounds were obtained. With the same conditions presented in Table 2, the
obtained results by applying Theorem 1, 2 to the above system (52) are also compared with the existing ones of [23,32]. From
Table 2, one can see Theorem 1 which does not employ delay partitioning technique provides larger delay bounds than the
results of [32]. Even though the results of Theorem 2 do not significantly enhance the feasible region of Theorem 1, Theorem
3 gives larger delay bounds than those of Theorem 2. This supports the effectiveness of the proposed idea in Theorem 3 in
reducing the conservatism of stability criteria.
5. Conclusions

In this paper, three delay-dependent stability criteria for neural networks with interval time-varying delays have been
proposed by the use of Lyapunov method and LMI framework. In Theorem 1, by constructing the augmented Lyapunov–
Krasovskii functional and utilizing reciprocal convex optimization approach introduced in [40], less conservative results
of stability criterion has been proposed without the use of delay-partitioning techniques. Based on the results of Theorem
1, it was shown that improved feasible region of stability criterion can be obtained by modifying some intervals of integral
terms in the proposed Lyapunov–Krasovskii functional. By dividing the bounding of activation functions into two, the further
improved stability criterion was proposed in Theorem 3. Through two well-known examples, the improvement of the pro-
posed stability criteria has been successfully verified.
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