
Applied Mathematics and Computation 219 (2012) 3831–3839
Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Global synchronization of complex networks perturbed by the
Poisson noise

Bo Song a,b, Ju H. Park a,⇑, Zheng-Guang Wu a,c, Ya Zhang d

a Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea
b School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China
c National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
d School of Mathematics and Physics, Xuzhou Institute of Technology, Xuzhou, Jiangsu 221000, PR China

a r t i c l e i n f o a b s t r a c t
Keywords:
Stochastic complex networks
Poisson noises
Synchronization
0096-3003/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.amc.2012.10.012

⇑ Corresponding author.
E-mail addresses: joecole1980@yahoo.com.cn (B.
In this paper, the problem of stochastic synchronization analysis is investigated for com-
plex networks perturbed by the Poisson noise. By using the key tool such as the infinites-
imal operator for stochastic differential equations driven by the Poisson process, this paper
proposes a globally exponentially synchronization criterion in mean square for complex
networks perturbed by the Poisson noise. Finally, numerical examples are provided to
demonstrate the effectiveness of the proposed approach.
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1. Introduction

As is known to all, complex dynamical networks (CDNs) widely exist in the real world, including food-webs, ecosystems,
metabolic pathways, the Internet, the World Wide Web, social networks and global economic markets [1,2]. Since the dis-
coveries of the small-world feature [3] and the scale-free feature [4] of complex networks, the analysis and the control of the
dynamical behaviors in complex networks have been extensively investigated in the past decades. As a significant collective
behavior, the studies on the synchronization phenomena of complex dynamical networks have gained considerable research
interests [5–12].

On the other hand, in the real world, complex networks are often subject to environmental disturbances; especially the
signal transfer within complex networks is always affected by the stochastic perturbations. Therefore, in order to reflect
more realistic dynamical behaviors, many researchers have recently investigated the synchronization problems of complex
networks perturbed by stochastic noises. For instance, complex networks perturbed by Brown noises have been discussed in
[13–16]. The synchronization problems of discrete-time stochastic complex networks with Brown noises were investigated
in [13,14]. As to the continuous case, the global exponential synchronization problem for complex dynamical networks with
nonidentical nodes and Brown perturbations was studied in [15]. And the synchronization control problem for the compet-
itive complex networks with Brown noises was investigated in [16].

However, it is well known that in the real world, beside Brown noises, there is a very common but important kind of ran-
dom noises: Poisson noises. Poisson noises can be widely found in various applications such as neurophysiology systems,
storage systems, queueing systems, economic systems, and so on [17,18]. It should be pointed out that, unlike the Brown
process whose almost all sample paths are continuous, the Poisson process NðtÞ is a jump process and has the sample paths
which are right-continuous and have left limits (i.e. càdlàg). Therefore, there is a great difference between the stochastic
integral with respect to the Brown process and the one with respect to the Poisson process. As a result, the dynamical
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behaviors of the stochastic systems driven by the Poisson process are essential different from the stochastic systems driven
by the Brown process. Thus, it is very important to investigate the dynamic behaviors, such as the synchronization phenom-
ena, for complex networks perturbed by the Poisson process. However, to the best of our knowledge, there is still no paper to
discuss the synchronization problem for this kind of systems.

Motivated by above reasons, this paper investigates the synchronization problem for stochastic complex networks per-
turbed by the Poisson noise. By using the key tool such as the infinitesimal operator for stochastic differential equations dri-
ven by the Poisson process, this paper presents a globally exponentially synchronization criterion in mean square for
complex networks perturbed by the poisson noise. Finally, numerical examples are provided to demonstrate the effective-
ness of the proposed approach.

Notation: Throughout the paper, unless otherwise specified, we will employ the following notation. Let ðX;F ; fF tgtP0;PÞ
be a complete probability space with a natural filtration fF tgtP0 and Eð�Þ be the expectation operator with respect to the
probability measure. If A is a vector or matrix, its transpose is denoted by AT . If P is a square matrix, P > 0 ( P < 0) means
that is a symmetric positive (negative) definite matrix of appropriate dimensions while P P 0 ( P 6 0) is a symmetric positive
(negative) semidefinite matrix. I stands for the identity matrix of appropriate dimensions. Let j � j denote the Euclidean norm
of a vector and its induced norm of a matrix. Unless explicitly specified, matrices are assumed to have real entries and com-
patible dimensions. L2ðXÞ denotes the space of all random variables X with EjXj2 <1, it is a Banach space with norm

kXk2 ¼ ðEjXj
2Þ1=2. The symbol ‘⁄’ within a matrix represents the symmetric terms of the matrix, e.g. X Y

� Z

� �
¼ X Y

YT Z

� �
.

2. Problem formulation and preliminaries

Consider the following complex dynamical networks consisting of N nodes perturbed by the Poisson noise:
dxiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
XN

j¼1

gijCxjðtÞ
" #

dt þ riðt; xiðtÞÞdNðtÞ; i ¼ 1;2; . . . ;N ð1Þ
where xiðtÞ ¼ xi1ðtÞ; xi2ðtÞ; . . . ; xinðtÞ½ �T 2 Rn is the state vector of the ith network at time t; A denotes a known connection ma-
trix, B denotes the connection weight matrix; C 2 Rn�n is the matrix describing the inner-coupling between the subsystems
at time t; G ¼ ðgijÞN�N is the out-coupling configuration matrix representing the coupling strength and the topological struc-
ture of the complex networks. rið�; �Þ : R�Rn ! Rn is the noise intensity function vector and fN ðtÞgtP0 is a one-dimension
fF tgtP0 adapted Poisson process with parameter k > 0. And f ðxiðtÞÞ ¼ ðf1ðxi1ðtÞÞ; . . . ; fnðxinðtÞÞÞT is an unknown but sector-
bounded nonlinear function.

The initial conditions associated with system (1) are given by
xið0Þ ¼ ui; i ¼ 1;2; . . . ;N; ð2Þ
where ui is the F 0-measurable random variable and independent of fN ðtÞgtP0 such that Eðu2
i Þ <1.

Let
xðtÞ ¼ x1ðtÞT ; . . . ; xNðtÞT
� �T

;

FðxðtÞÞ ¼ f ðx1ðtÞÞT ; . . . ; f ðxNðtÞÞT
� �T

;

rðt; xðtÞÞ ¼ r1ðt; x1ðtÞÞT ; . . . ;rNðt; xNðtÞÞT
� �T

:

With the Kronecker product ‘�’ for matrices, system (1) can be rearranged as
dxðtÞ ¼ yðt; xðtÞÞdt þ rðt; xðtÞÞdNðtÞ; ð3Þ
where yðt; xðtÞÞ ¼ ðIN � Aþ G� CÞxðtÞ þ ðIN � BÞFðxðtÞÞ.
In this paper, we will mainly be concerned with the globally exponentially synchronization criterion in mean square. For

this, we need the infinitesimal operator D associated to Eq. (3) (see [18–21]).
DVðt; xÞ ¼ @Vðt; xÞ
@t

þ @Vðt; xÞ
@x

yðt; xÞ þ kðVðt; xþ rðt; xÞÞ � Vðt; xÞÞ; ð4Þ
where Vðt; xÞ is any non-negative function on R�Rn�N and is continuously twice differentiable with respect to x and once
differentiable with respect to t. Throughout this paper, the following assumptions, definitions and propositions are needed to
prove our main results.

Definition 1 [15]. The stochastic complex network (1) is globally exponentially synchronized in mean square, if there exist
constants a > 0, c > 0, such that for all ui, uj, the following holds for t P 0:
Efjxiðt;uiÞ � xjðt;ujÞj
2g 6 ce�at; 1 6 i < j 6 N:
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Assumption 1. For 8x; y 2 Rn, the nonlinear function f ð�Þ is assumed to satisfy the following condition:
ðf ðxÞ � f ðyÞ � Uðx� yÞÞTðf ðxÞ � f ðyÞ � Vðx� yÞÞ 6 0; ð5Þ
where U and V are known constant real matrices.
Assumption 2. The outer-coupling configuration matrix of the complex networks (1) satisfies
gij ¼ gji P 0; ði – jÞ;

gii ¼ �
XN

j¼1;j–i

gij; i; j ¼ 1;2; . . . ;N:
Assumption 3. The noise intensity function vector ri : R�Rn !Rn satisfies the Lipschitz condition, i.e., there exists a con-
stant matrix W of appropriate dimension such that
jriðt;uÞ � rjðt; vÞj2 6 jWðu� vÞj2 ð6Þ
for all i; j ¼ 1;2; . . . ;N and u;v 2 Rn.
Proposition 1 [15]. The Kronecker product has the following properties:
ðaAÞ � B ¼ A� ðaBÞ;
ðAþ BÞ � C ¼ A� C þ B� C;

ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ;
ðA� BÞT ¼ AT � BT :
Proposition 2 [13]. Let U ¼ ðaijÞn�n, P 2 Rm�m, x ¼ ðxT
1; x

T
2; . . . ; xT

nÞ
T , y ¼ ðyT

1; y
T
2; . . . ; yT

nÞ
T , where xi ¼ ðxi1; xi2; . . . ; ximÞT 2 Rm,

yi ¼ ðyi1; yi2; . . . ; yimÞ
T 2 Rm (i ¼ 1;2; . . . ;n). If U ¼ UT and each row sum of U is equal to zero, then
xTðU � PÞy ¼ �
X

16i<j6n

aijðxi � xjÞT Pðyi � yjÞ: ð7Þ
3. Main results

We are in the position to present our main results of the globally exponentially synchronization criterion in mean square
for the complex networks perturbed by the Poisson noise.

Theorem 1. Under Assumptions 1–3, the dynamic system (1) is globally exponentially synchronized in mean square if there exist
matrices P > 0 and scalars � > 0, �1 > 0 such that the following LMI hold for all 1 6 i < j 6 N
N ¼

N11 N12

ffiffiffi
k
p

P 0
� �2�1I 0 0
� � �P P

� � � ��I

0
BBB@

1
CCCA < 0; ð8Þ
where
N11 ¼ PAþ AT P � NgijPC� NgijC
T P þ �kWT W � kP � �1UT V � �1VT U;

N12 ¼ PBþ �1UT þ �1VT :
Proof. Firstly, from (8), we can see that the matrix H ¼ diagðI; I; P�1; IÞ is nonsingular. Thus we can have
HTNH ¼

N11 N12

ffiffiffi
k
p

I 0
� �2�1I 0 0
� � �P�1 I
� � � ��I

0
BBB@

1
CCCA < 0: ð9Þ
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Then by the Schur complement, we can obtain
~N ¼
~N11 N12

� �2�1I

 !
< 0; ð10Þ
where

~N11 ¼ N11 þ kðP�1 � ��1IÞ�1

:

Secondly, for the system (3), consider the following Lyapunov function:
Vðt; xÞ ¼ xðtÞTðU � PÞxðtÞ; ð11Þ
where
U ¼

N � 1 �1 � � � �1
�1 N � 1 � � � �1
� � � � � � � � � � � �
�1 �1 � � � N � 1

0
BBB@

1
CCCA:
Then, by the formula (4), the infinitesimal operator can be obtained
DVðt; xÞ ¼ 2xðtÞTðU � PÞyðt; xðtÞÞ þ k xðtÞ þ rðt; xðtÞÞð ÞTðU � PÞ xðtÞ þ rðt; xðtÞÞð Þ � kxðtÞTðU � PÞxðtÞ: ð12Þ
By Propositions 1 and 2, it is easy to obtain
DVðt; xÞ ¼
X

16i<j6N

½2ðxiðtÞ � xjðtÞÞTðPA� NgijPCÞðxiðtÞ � xjðtÞÞ þ 2ðxiðtÞ � xjðtÞÞT PBðf ðxiðtÞÞ � f ðxjðtÞÞÞ

þ k xiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞ
� �T P xiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞ

� �
� kðxiðtÞ

� xjðtÞÞT PðxiðtÞ � xjðtÞÞ�: ð13Þ
By (9), we have
P�1 � ��1I > 0; ð14Þ
�I � P > 0: ð15Þ
Then, we can prove that
ðxiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞÞT PðxiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞÞ

6 ðxiðtÞ � xjðtÞÞTðP�1 � ��1IÞ�1ðxiðtÞ � xjðtÞÞ þ �ðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞTðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞ: ð16Þ
In fact, using the matrix inversion formula, we can easily know that
ðP�1 � ��1IÞ�1 ¼ P þ Pð�I � PÞ�1P: ð17Þ
Let
! ¼ ðP�1 � ��1IÞ�1 0
� �I

 !
�

P P

� P

� �
¼ Pð�I � PÞ�1P �P

� �I � P

 !
: ð18Þ
Noticing that
U ¼ P�1 0
ð�I � PÞ�1 I

 !
ð19Þ
is nonsingular, we can obtain that
UT!U ¼
0 0
� �I � P

� �
P 0; ð20Þ
which denotes ! P 0. Thus, it follows that
xiðtÞ � xjðtÞ
riðt; xiðtÞÞ � rjðt; xjðtÞÞ

� �T

!
xiðtÞ � xjðtÞ

riðt; xiðtÞÞ � rjðt; xjðtÞÞ

� �
¼

xiðtÞ � xjðtÞ
riðt; xiðtÞÞ � rjðt; xjðtÞÞ

� �T ðP�1 � ��1IÞ�1 0
� �I

 ! 

�
P P

� P

� ��
xiðtÞ � xjðtÞ

riðt; xiðtÞÞ � rjðt; xjðtÞÞ

� �

¼ ðxiðtÞ � xjðtÞÞTðP�1 � ��1IÞ�1ðxiðtÞ � xjðtÞÞ þ �ðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞTðriðt; xiðtÞÞ
� rjðt; xjðtÞÞÞ � ðxiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞÞT PðxiðtÞ � xjðtÞ þ riðt; xiðtÞÞ � rjðt; xjðtÞÞÞP 0; ð21Þ
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From (21), it is very easy to obtain (16). Using (16), we can have
DVðt; xÞ 6
X

16i<j6N

2ðxiðtÞ � xjðtÞÞTðPA� NgijPCÞðxiðtÞ � xjðtÞÞ þ 2ðxiðtÞ � xjðtÞÞT PBðf ðxiðtÞÞ � f ðxjðtÞÞÞ
h

þ kðxiðtÞ � xjðtÞÞTðP�1 � ��1IÞ�1ðxiðtÞ � xjðtÞÞ þ k�ðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞTðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞ

�kðxiðtÞ � xjðtÞÞT PðxiðtÞ � xjðtÞÞ
i
: ð22Þ
From Assumption 3, it is clear that
ðriðt; xiðtÞÞ � rjðt; xjðtÞÞTðriðt; xiðtÞÞ � rjðt; xjðtÞÞÞ 6 ðxiðtÞ � xjðtÞÞT WT WðxiðtÞ � xjðtÞÞ: ð23Þ
From Assumption 1, it can be derived that
0 6 2�1ðxiðtÞ � xjðtÞÞT UT f ðxiðtÞÞ � f ðxjðtÞÞ
� �

þ 2�1ðf ðxiðtÞÞ � f ðxjðtÞÞÞT V xiðtÞ � xjðtÞ
� �

� 2�1 xiðtÞ � xjðtÞ
� �T UT V xiðtÞ � xjðtÞ

� �
� 2�1ðf ðxiðtÞÞ � f ðxjðtÞÞÞTðf ðxiðtÞÞ � f ðxjðtÞÞÞ: ð24Þ
Combining (22)–(24), we have
DVðt; xÞ 6
X

16i<j6N

nT
ij

~Nnij; ð25Þ
where
nij ¼
xiðtÞ � xjðtÞ

f ðxiðtÞÞ � f ðxjðtÞÞ

� �
:

From (10), it is easy to prove that there exists a scalar c > 0 such that
DVðt; xÞÞ 6 �c
X

16i<j6N

ðxiðtÞ � xjðtÞÞTðxiðtÞ � xjðtÞÞ: ð26Þ
Finally, using a method similar to that used to prove the stability of stochastic differential equations driven by the Poisson
process in [18,20,21], we can prove that all the subsystems in (1) are globally asymptotically synchronized in the mean
square. The proof is completed. h
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x11(t)−x31(t)

Fig. 1. State error of x11ðtÞ � xi1ðtÞ, i ¼ 2;3.
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Remark 1. In recent years, the synchronization problems for stochastic complex networks have been studied extensively in
[13–16]. It should be pointed out that most of stochastic complex networks in above papers are perturbed by the Brown
noises, and stochastic complex networks perturbed by the Poisson noise are still not investigated. Theorem 1 gives a globally
exponentially synchronization criterion in mean square for complex networks perturbed by the Poisson noise by using the
infinitesimal operator of stochastic differential equations driven by the Poisson process.
4. Numerical examples

In this section, we present two simulation examples to illustrate the effectiveness of our approach.

Example 1. Consider the following complex network consisting of three nodes.
dxiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
X3

j¼1

gijCxjðtÞ
" #

dt þ riðt; xiðtÞÞdNðtÞ
for all i ¼ 1;2;3, where xiðtÞ ¼ xi1ðtÞ; xi2ðtÞ½ �T 2 R2 is the state vector of the ith subsystem, fN ðtÞgtP0 is a one-dimension
fF tgtP0 adapted Poisson process with parameter k ¼ 6:5. Let
A ¼
�3 0
0 �3

� �
; B ¼

�1 0:1
0:2 �1

� �
:

The out-coupling configuration matrices G and inner-coupling matrices C are chosen as
G ¼
�3 1 2
1 �2 1
2 1 �3

0
B@

1
CA; C ¼

0:2 0
0:1 0:2

� �
:

The noise intensity function vector rið�; �Þ is of the following form:
riðt; xiðtÞÞ ¼
ffiffiffiffiffiffiffi
0:1
p

0
0

ffiffiffiffiffiffiffi
0:2
p

 !
xiðtÞ;
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time/seconds

x12(t)−x22(t)
x12(t)−x32(t)

Fig. 2. State error of x12ðtÞ � xi2ðtÞ, i ¼ 2;3.
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and the nonlinear function f ðxiðtÞÞ ¼ ðf1ðxi1ðtÞÞ; f2ðxi2ðtÞÞÞT ¼ ðtanhðxi1ðtÞÞ; tanhðxi2ðtÞÞÞT . Thus, the matrices U;V ;W in
Assumptions 1 and 3 are
U ¼
0 0
0 0

� �
; V ¼

1 0
0 1

� �
; W ¼

ffiffiffiffiffiffiffi
0:1
p

0
0

ffiffiffiffiffiffiffi
0:2
p

 !
:

According to Theorem 1, we can know that this complex network is globally exponentially synchronized in mean square.
When we randomly choose the initial states in ½0;1� � ½0;1�, the synchronization errors are plotted in Figs. 1 and 2, which
can confirm that the stochastic complex dynamical system (1) is globally exponentially synchronized in mean square.
Example 2. Consider the following complex network consisting of three nodes.
dxiðtÞ ¼ AxiðtÞ þ Bf ðxiðtÞÞ þ
X3

j¼1

gijCxjðtÞ
" #

dt þ riðt; xiðtÞÞdNðtÞ
for all i ¼ 1;2;3, where xiðtÞ ¼ xi1ðtÞ; xi2ðtÞ½ �T 2 R2 is the state vector of the ith subsystem, fN ðtÞgtP0 is a one-dimension
fF tgtP0 adapted Poisson process with parameter k ¼ 5. Let
A ¼
�1 0
0 �1

� �
; B ¼

2 �0:1
�5 3

� �
:

The out-coupling configuration matrices G and inner-coupling matrices C are chosen as
G ¼
�3 1 2
1 �2 1
2 1 �3

0
B@

1
CA; C ¼

4 0
0 4

� �
:

The noise intensity function vector rið�; �Þ is of the following form:
riðt; xiðtÞÞ ¼
1 0
0 1

� �
xiðtÞ;
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time/seconds

x11(t)−x21(t)
x11(t)−x31(t)

Fig. 3. State error of x11ðtÞ � xi1ðtÞ, i ¼ 2;3.
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Fig. 4. State error of x12ðtÞ � xi2ðtÞ, i ¼ 2;3.
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and the nonlinear function f ðxiðtÞÞ ¼ ðf1ðxi1ðtÞÞ; f2ðxi2ðtÞÞÞT ¼ ðtanhðxi1ðtÞÞ; tanhðxi2ðtÞÞÞT . Thus, the matrices U;V ;W in
Assumptions 1 and 3 are
U ¼
0 0
0 0

� �
; V ¼

1 0
0 1

� �
; W ¼

1 0
0 1

� �
:

According to Theorem 1, we can know that this complex network is globally exponentially synchronized in mean square.
When we randomly choose the initial states in ½0;1� � ½0;1�, the synchronization errors are plotted in Figs. 3 and 4, which
can confirm that the stochastic complex dynamical system (1) is globally exponentially synchronized in mean square.
5. Conclusions

This paper is concerned with the problem of stochastic synchronization analysis for complex networks perturbed by the
Poisson noise. Using the infinitesimal operator for stochastic differential equations driven by the Poisson process, this paper
gives a globally exponentially synchronization criterion in mean square. Finally, numerical examples are provided to dem-
onstrate the effectiveness of the proposed approach.

On the other hand, it is worth mentioning that there are still some important problems to solve for stochastic complex
networks perturbed by the Poisson noise. (1) When the whole network cannot synchronize by itself, some controllers may be
designed and applied to force the network to synchronize. Therefore, it is necessary to consider the control problem, such as
the adaptive control and pinning control, for synchronization of stochastic complex networks perturbed by the Poisson noise
in the future. (2) It has now been well realized that in spreading information through complex networks, there always exist
time delays, which may decrease the quality of the system and even lead to oscillation, divergence, and instability. Accord-
ingly, the synchronization problems for stochastic delayed complex networks perturbed by the Poisson noise should be stud-
ied in the future researches.
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