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This paper proposes an adaptive control method to achieve the lag synchronization
between uncertain complex dynamical network having delayed coupling and a non-
identical reference node. Unknown parameters of both the network and reference node
are estimated by adaptive laws obtained by Lyapunov stability theory. With the estimated
parameters, the proposed method guarantees the globally asymptotical synchronization of
the network in spite of unknown bounded disturbances. The effectiveness of our work is
verified through a numerical example and simulation.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

A complex dynamical network (CDN) is a set of coupled nodes interconnected by edges, in which each node represents a
dynamical system. The structure of many real systems in nature can be described by the CDNs, such as social relationship
networks, metabolic networks, food chain, disease transmission networks, Internet, the World-Wide-Web, power grids, and
so on [1–3]. This has led to much interest to the studies of the CDNs. In particular, synchronization of the network has been
one of the main topics due to its various applications. In the literature, a number of researchers have proposed many syn-
chronization methods including linear state feedback control [4], pinning control [5,6], state observer based control [7], con-
trol of CDN with impulsive effect [8,9], and adaptive control methods [10–14]. It should be noted that these studies dealt
with complete synchronization scheme. However, several different types of synchronization phenomena have been reported,
such as generalized [15,16], lag [17], phase [18], projective [19], anticipating synchronization [20], and so on. Among them,
lag synchronization can be a reasonable scheme from the viewpoint of engineering applications and characteristics of chan-
nel. This is why the time delay is inevitable when signals between systems are transferred. Therefore, lag synchronization
has become a hot topic and attracted much attention from authors in many fields [17,21–23]. Unfortunately, there exist
few results of lag synchronization method for CDNs [24]. In [24], a control method was proposed to lag synchronize the net-
work with an identical node. Although the approach achieved the lag synchronization for CDN, there are still some problems
which should be studied. They include: (1) coupling delay, (2) parameter uncertainty and external disturbance, and (3) syn-
chronization with non-identical node. (1) Coupling delay between nodes is an inevitable factor in the network. Because the
speed of signal travel between nodes is limited and the network nodes may be required to have non-local interconnections
such as telecommunications [25,26]. (2) It is well-known that parameter uncertainty and external disturbance are unavoid-
able factors in many practical situations. Moreover, they can destroy the system stability or can make control of dynamic
. All rights reserved.
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systems more difficult due to their effects. Therefore, some approaches such as updating law for unknown parameters or
robust controller have been developed to deal with the uncertainty and disturbance [12,13,27]. (3) It is not realistic to as-
sume that all nodes of the network are synchronized with an identical reference node. In real life applications such as laser
array and biological systems, it is recognized that the network synchronization with non-identical node can be demanded
[28,29]. Therefore, it is worth proposing a lag synchronization method in which the problems mentioned above are
considered.

In this paper, a lag synchronization method between uncertain complex network with delayed coupling and a non-iden-
tical reference node has been proposed. Both the network nodes and reference one have parameter uncertainties and
bounded external disturbances. All of the unknown parameters are estimated by adaptive laws derived from Lyapunov sta-
bility theory, which are used in the proposed synchronization method. By use of the updating laws, a robust controller is
designed to synchronize the network despite the disturbances bounded by unknown constants. In the end, the network is
globally asymptotically synchronized with the proposed method. Results of numerical example show the effectiveness of
the proposed approach.

The notation throughout the paper is quite standard. Rn denotes n-dimensional Euclidean space, and Rn�m is the set of all
n �m real matrices. The notation X > 0(P0) means that X is real symmetric and positive definite (semi-definite). diag (� � �)
denotes the block diagonal matrix. The superscript ‘T’ denotes the transpose of the matrix. Sometimes, the arguments of
a function or a matrix will be omitted in the analysis when no confusion can arise.

2. Problem statement

Consider a controlled complex dynamic network consisting of N linearly and diffusively non-delayed and delayed coupled
nodes with both parameter uncertainty and disturbance. The ith node can be described as follows:
_xiðtÞ ¼ fiðxiðtÞÞ þ FiðxiðtÞÞhi þ c
XN

j¼1

aijCxjðtÞ þ c
XN

j¼1

bijCxjðt � diÞ þ DiðtÞ þ uiðtÞ; ð1Þ
where i = 1,2, . . . ,N, xiðtÞ ¼ ½xi1ðtÞ; xi2ðtÞ; . . . ; xinðtÞ�T 2 Rn is the state vector of node i, uiðtÞ 2 Rn is input vector, fi : Rn ! Rn and
Fi : Rn ! Rn�mi are the known continuous nonlinear function matrices, hi 2 Rmi is the unknown constant parameter vector,
c > 0 is the coupling strength, di P 0 is unknown coupling delay, and Di 2 Rn is the disturbance. Coupling matrices
A ¼ ðaijÞ 2 RN�N and B ¼ ðbijÞ 2 RN�N with zero-sum rows represent the non-delayed and delayed coupling configuration of
the network, respectively. If there is a connection between i and j node (i – j), aij = 1 (or bij = 1), otherwise aij = 0 (or
bij = 0) (i – j) for i, j = 1,2, . . . ,N. C = diag (c1,c2, . . . ,cn) is a positive matrix with ci = 1 for a particular i and cj = 0 for j – i, which
means two coupled nodes are linked through their ith state variables.

The reference node is described as
_xrðtÞ ¼ frðxrðtÞÞ þ FrðxrðtÞÞhr þ DrðtÞ; ð2Þ
where xrðtÞ ¼ ½xr1ðtÞ; xr2ðtÞ; . . . ; xrnðtÞ�T 2 Rn is the state vector, fr : Rn ! Rn and Fr : Rn ! Rn�mr are the known continuous
nonlinear function matrices, hr 2 Rmr is the unknown constant parameter vector, and Dr 2 Rn is the disturbance.

Let us define the error signal for lag synchronization as
eiðtÞ ¼ xiðtÞ � xrðt � sðtÞÞ ¼

xi1ðtÞ � xr1ðt � sðtÞÞ
xi2ðtÞ � xr2ðt � sðtÞÞ

..

.

xinðtÞ � xrnðt � sðtÞÞ

2
66664

3
77775 ¼

ei1ðtÞ
ei2ðtÞ

..

.

einðtÞ

2
66664

3
77775 for i ¼ 1; . . . ;N; ð3Þ
where s(t) P 0 is a given channel propagation delay or channel time-delay.
Our objective is to design the controller ui(t) which makes the error ei(t) globally asymptotically stabilized, i.e.
lim
t!1
keiðtÞk ¼ lim

t!1
kxiðtÞ � xrðt � sðtÞÞk ¼ 0; i ¼ 1;2; . . . ;N: ð4Þ
This means that the network (1) is lag synchronized with the reference node (2).
Throughout this paper, following hypotheses are given:

Assumption 1. The channel propagation delay 0 6 s(t) <1 is a differentiable function with j _sðtÞj 6 m <1 for any t where m
is a positive constant.
Assumption 2. For any positive constants Wi and Wr, the time-varying disturbances Di(t) and Dr(t) are bounded, i.e.
kDi(t)k 6Wi, kDr(t)k 6Wr.

In many practical cases, it is difficult to know the upper bounds Wi, Wr of disturbances for the network and reference
node. In this paper, we enable to achieve the lag synchronization by using adaptive scheme to estimate the unknown upper
bounds.
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3. Controller design for lag synchronization

In this section, we propose an adaptive lag synchronization method for the uncertain complex dynamical network (1)
with delayed coupling.

From (1) and (2), the error dynamics for lag synchronization is obtained as
_eiðtÞ ¼ fiðxiðtÞÞ þ FiðxiðtÞÞhi þ c
XN

j¼1

aijCejðtÞ þ c
XN

j¼1

bijCejðt � diÞ þ DiðtÞ þ uiðtÞ � ð1� _sðtÞÞffrðxrðt � sðtÞÞÞ

þ Frðxrðt � sðtÞÞÞhr þ DrðtÞg: ð5Þ
The following theorem provides the control input and adaptive laws design method to make the errors ei(t) for i = 1, . . . ,N
globally asymptotically stabilized.

Theorem 1. Consider the lag synchronization error (3) between the complex dynamical network (1) and the reference node (2).
The error is globally asymptotically stabilized with a given propagation delay s(t), if the control input and the adaptive laws are
chosen as
uiðtÞ ¼ �aiðtÞeiðtÞ � biðtÞsgn ðeiðtÞÞ � fiðxiðtÞÞ � FiðxiðtÞÞĥiðtÞ þ ð1� _sðtÞÞffrðxrðt � sðtÞÞÞ þ Frðxrðt � sðtÞÞÞĥriðtÞg; ð6Þ

_̂hiðtÞ ¼ k1FT
i ðxiðtÞÞeiðtÞ; ð7Þ

_̂hriðtÞ ¼ �k2ð1� _sðtÞÞFT
r ðxrðt � sðtÞÞÞeiðtÞ; ð8Þ

_aiðtÞ ¼ k3eT
i ðtÞeiðtÞ; ð9Þ

_biðtÞ ¼ k4eT
i ðtÞsgnðeiðtÞÞ for i ¼ 1; . . . ;N; ð10Þ
where k1, k2, k3, and k4 are positive constants, and ĥiðtÞ and ĥriðtÞ are the estimated parameters for the network (1) and reference
node (2), respectively.
Proof. Choose the following Lyapunov function candidate
VðtÞ ¼ 1
2

XN

i¼1

eT
i ðtÞeiðtÞ þ

1
2k1

XN

i¼1

~hT
i ðtÞ~hiðtÞ þ

1
2k2

XN

i¼1

~hT
riðtÞ~hriðtÞ þ

1
2k3

XN

i¼1

~a2
i ðtÞ þ

1
2k4

XN

i¼1

~b2
i ðtÞ þ

XN

i¼1

Z t

t�di

eT
i ðsÞQeiðsÞds; ð11Þ
where ~hiðtÞ ¼ ĥiðtÞ � hi; ~hriðtÞ ¼ ĥriðtÞ � hr ; ~aiðtÞ ¼ aiðtÞ � a�i ; ~biðtÞ ¼ biðtÞ � b�i ; Q ¼ diag ðq1; . . . ; qnÞ > 0, and a�i and b�i are
designed positive constants.

Then, the time derivative of V(t) along the error dynamics (5) is derived as
_V ¼
XN

i¼1

eT
i ðtÞ _eiðtÞ þ

1
k1

_̂hT
i ðtÞ~hiðtÞ þ

1
k2

_̂hT
riðtÞ~hriðtÞ þ

1
k3

_aiðtÞ~aiðtÞ þ
1
k4

_biðtÞ~biðtÞ þ eT
i ðtÞQeiðtÞ � eT

i ðt � diÞQeiðt � diÞ
� �

:

ð12Þ
By application of the control input (6) to error dynamics _eðtÞ, we have
_V ¼
XN

i¼1

eT
i ðtÞf�aiðtÞeiðtÞ � biðtÞsgn ðeiðtÞÞ � FiðxiðtÞÞ~hiðtÞ þ ð1� _sðtÞÞFrðxrðt � sÞÞ~hrðtÞg

h i

þ
XN

i¼1

eT
i c

XN

j¼1

aijCejðtÞ þ c
XN

j¼1

bijCejðt � diÞ þ DiðtÞ � ð1� _sðtÞÞDrðtÞ
( )" #

þ
XN

i¼1

1
k1

_̂hT
i ðtÞ~hiðtÞ þ

1
k2

_̂hT
riðtÞ~hriðtÞ þ

1
k3

_aiðtÞ~aiðtÞ þ
1
k4

_biðtÞ~biðtÞ
� �

þ
XN

i¼1

eT
i ðtÞQeiðtÞ �

XN

i¼1

eT
i ðt � diÞQeiðt � diÞ: ð13Þ
From the adaptation laws (7) and (8), _V is led as follows:
_V ¼ �
XN

i¼1

aiðtÞeT
i ðtÞeiðtÞ �

XN

i¼1

biðtÞeT
i ðtÞ sgnðeiðtÞÞ þ c

XN

i¼1

eT
i ðtÞ

XN

j¼1

aijCejðtÞ þ c
XN

i¼1

eT
i ðtÞ

XN

j¼1

bijCejðt � diÞ

þ
XN

i¼1

eT
i ðtÞðDiðtÞ�ð1� _sðtÞÞDrðtÞÞþ

XN

i¼1

eT
i ðtÞQeiðtÞ�

XN

i¼1

eT
i ðt�diÞQeiðt�diÞ þ

XN

i¼1

1
k3

_aiðtÞ~aiðtÞ þ
XN

i¼1

1
k4

_biðtÞ~biðtÞ: ð14Þ
Let us define X ¼ diag ða1; . . . ;aNÞ;X� ¼ diag a�1; . . . ;a�N
� �

,
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~ejðtÞ ¼

e1jðtÞ

..

.

eNjðtÞ

2
664

3
775; and ~ejðt � dÞ ¼

e1jðt � d1Þ
..
.

eNjðt � dNÞ

2
664

3
775 for j ¼ 1; . . . ;n: ð15Þ
Then, applying (9)–(14) yields
_V ¼ �
Xn

j¼1

~eT
j ðtÞX

�~ejðtÞ þ c
Xn

j¼1

cj~e
T
j ðtÞA~ejðtÞ þ c

Xn

j¼1

cj~e
T
j ðtÞB~ejðt � dÞ þ

Xn

j¼1

qj~e
T
j ðtÞ~ejðtÞ �

Xn

j¼1

qj~e
T
j ðt � dÞ~ejðt � dÞ

þ
XN

i¼1

eT
i ðtÞðDiðtÞ � ð1� _sðtÞÞDrðtÞÞ �

XN

i¼1

b�i eT
i ðtÞsgn ðeiðtÞÞ: ð16Þ
By use of the fact that 2xTy 6 xTNx + yTN�1y for any vectors x; y 2 Rm, and a positive definite matrix N 2 Rm�m, we have
_V 6 �
Xn

j¼1

~eT
j ðtÞX

�~ejðtÞ þ c
Xn

j¼1

cj~e
T
j ðtÞA~ejðtÞ þ

Xn

j¼1

qj~e
T
j ðtÞ~ejðtÞ þ

Xn

j¼1

ðccjÞ
2

4qj

~eT
j ðtÞBBT~ejðtÞ þ

XN

i¼1

eT
i ðtÞðDiðtÞ

� ð1� _sðtÞÞDrðtÞÞ �
XN

i¼1

b�i eT
i ðtÞsgn ðeiðtÞÞ: ð17Þ
From Assumptions 1 and 2, the following inequality is led
DiðtÞ � ð1� _sðtÞÞDrðtÞ 6 kDiðtÞ � ð1� _sðtÞÞDrðtÞk 6 kDiðtÞk þ j1� _sðtÞj � kDrðtÞk 6 ei; ð18Þ
where ei is a positive constant.
Eventually, we obtain
_V 6
Xn

j¼1

~eT
j ðtÞ ccjA

s þ
ðccjÞ

2

4qj
BBT þ qjIN �X�

" #
~ejðtÞ þ

XN

i¼1

ei � b�i
� �

keiðtÞk; ð19Þ
where As ¼ AþAT

2 .
Therefore, by taking appropriate a�i and b�i such that
ccjA
s þ
ðccjÞ

2

4qj
BBT þ qjIN �X� < 0; for j ¼ 1; . . . ;n; ð20Þ

ei � b�i < 0; for i ¼ 1; . . . ;N; ð21Þ
we can obtain _V 6 0. Noticing the positive differentiable and radially unbounded Lyapunov function V, we can observe that
the set S ¼ feiðtÞ 2 Rnj _VðtÞ ¼ 0g ¼ feiðtÞ 2 RnjeiðtÞ ¼ 0g contains no solutions other than the trivial solution ei(t) = 0. Accord-
ing to Lasalle’s invariance principle [30], the error ei(t) is globally asymptotically stable, i.e. limt?1kei(t)k = 0.

Finally, this means that the lag synchronization between the network (1) and the reference node (2) is achieved by the
control (6) and the update laws (7)–(10). This completes the proof. h
Remark 1. In much literature [21–23], the propagation delay s(t) is assumed to be a constant value and it results in that
_sðtÞ ¼ 0. In this paper, we consider the situation where the propagation delay is a time varying function. Therefore, it can
be said that the proposed method is more general and realistic than the works in [21–23].
Remark 2. The proposed method can be applied to the situations where the network (1) has only delayed or non-delayed
coupling. In other words, the control input (6) and adaptive laws (7)–(10) are still held when A = 0 or B = 0. This is easily
derived from the proof of Theorem 1 by setting A and B as zero matrix, respectively.
Remark 3. Although the inclusion of the sgn (ei(t)) function in (6) provides the robustness against unknown disturbances, it
inevitably cause chattering phenomenon due to the delay of the control input. It is well-known that the phenomenon may
degrade the performance of the controlled system and even lead to instability. In order to alleviate the chattering, the bound-
ary layer approach is used by replacing the sgn (ei(t)) function with the following saturation function
sat
eiðtÞ

d

� 	
¼

sgn ðeiðtÞÞ; if keiðtÞk > d;
eiðtÞ

d ; if keiðtÞk 6 d;

(
ð22Þ
where d is a small positive constant [30]. This saturation function (22) can approach the sgn(�) function, as enough small d is
chosen. However, the error ei(t) is only driven into a small bounded region {jei(t)j 6 d}, which means that the property of
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asymptotical stability is lost. Therefore, considering the relation between the chattering phenomenon and stability property
is required when designing the controller.
4. Numerical simulation

Let us consider an example to demonstrate the effectiveness of the proposed lag synchronization method. The reference
node is described as Chua’s circuit (Fig. 1(a)) with unknown parameters and disturbance
_xr1ðtÞ
_xr2ðtÞ
_xr3ðtÞ

2
64

3
75 ¼

0
xr1ðtÞ � xr2ðtÞ þ xr3ðtÞ

0

2
64

3
75þ

xr2ðtÞ � xr1ðtÞ � hðxr1ðtÞÞ 0
0 0
0 �xr2ðtÞ

2
64

3
75 hr1

hr2

� �
þ DrðtÞ; ð23Þ
where hðxr1ðtÞÞ ¼ g2xr1ðtÞ þ 1
2 ðg1 � g2Þðjxr1ðtÞ þ 1j � jxr1ðtÞ � 1jÞ with g1 = �1.4325 and g2 = �0.7831, and the parameter vec-

tor and disturbance signal are chosen as
hr ¼ ½hr1 hr2�T ¼ ½10 15�T ;
DrðtÞ ¼ ½0:3 sinðtÞ cosðtÞ 0:1 sinðtÞ 0:5 cosðtÞ�T :
Rössler attractor (Fig. 1(b)) is chosen as the ith network node with delayed coupling
Fig. 1. The trajectories of Chua circuit (a) and Rössler attractor (b).



Fig. 3. The estimated parameters ĥi (a) and ĥri (b).

Fig. 2. The synchronization error ei(t) = xi(t) � xr(t � s(t)) for i = 1, . . . ,6.
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_xi1ðtÞ
_xi2ðtÞ
_xi3ðtÞ

2
64

3
75 ¼

�xi2ðtÞ � xi3ðtÞ
xi1ðtÞ

xi1ðtÞxi3ðtÞ þ 0:2

2
64

3
75þ

0 0
xi2ðtÞ 0

0 �xi3ðtÞ

2
64

3
75 hi1

hi2

� �
þ c

XN

j¼1

aijCxjðtÞ þ c
XN

j¼1

bijCxjðt � diÞ þ DiðtÞ þ uiðtÞ for i ¼ 1;2; . . . ;N;

ð24Þ



Fig. 4. The control input signal of node 2, u2(t) = [u21(t) u22(t) u23(t)]T.
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where the unknown parameter vector hi = [hi1 hi2]T = [0.2 5.7]T, c = 0.2, di = 1, N = 6, and C = I3�3.
The two coupling matrices are chosen as
A ¼ ðaijÞ ¼

�5 1 1 1 1 1
0 �3 1 1 1 0
1 1 �4 0 1 1
0 1 0 �2 1 0
1 0 0 1 �3 1
0 1 1 1 1 �4

2
666666664

3
777777775
; B ¼ ðbijÞ ¼

�4 1 1 0 1 1
1 �4 0 1 1 1
1 0 �3 1 1 0
0 0 0 �2 1 1
1 0 1 1 �4 1
0 1 1 0 1 �3

2
666666664

3
777777775
: ð25Þ
We choose the disturbance Di as follows:
Di ¼
/i1 cosð/i3tÞ
/i2 sinð/i4tÞ
/i1 cosð/i4tÞ

2
64

3
75; ð26Þ
where
U ¼ ð/ijÞ ¼

0:8 0:7 0:8 1:2

0:9 0:8 1 0:9

1 0:7 0:8 0:7

0:6 1 0:6 1:0

0:9 0:8 0:8 0:9

0:7 0:9 0:9 0:6

2
6666666664

3
7777777775
:

The propagation delay is s(t) = 1 + sin(t). The gains of adaptive laws (7)–(10) are k1 = k2 = 15, k3 = 1, and k4 = 0.3. The initial
values are ĥi0 ¼ ĥir0 ¼ ai0 ¼ bi0 ¼ 0; xr0 ¼ ½�1 � 1 1�T , and xi0 are chosen in [�3,3] randomly. As mentioned in Remark 3, we
replace the sgn (ei(t)) function in (6) with (22) with d = 0.002 to reduce the chattering phenomenon.

Fig. 2 shows the lag synchronization errors ei(t) = xi(t) � xr(t � s(t)) for i = 1,2, . . . ,6. Moreover, we can observe that the
estimated parameters of the network nodes (Fig. 3(a)) and reference one (Fig. 3(b)) converge to their real values. Fig. 4 shows
the input signals of node 2 and we can see that they rarely have the chattering phenomenon. The trajectories of xr(t) and xi(t)
for node 2 and 6 are presented in Fig. 5. These results verify that the proposed controller (6) with adaptation laws (7)–(10)
makes the network (1) lag-synchronized, even if both the network and reference node have parameter uncertainties and
disturbances.



Fig. 5. The state trajectories: (a) x2(t), (b) x6(t) with the reference node xr(t).
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5. Conclusion

An adaptive lag synchronization method was presented for uncertain CDNs with delayed coupling. Both the network and
a non-identical reference node are affected by parameter uncertainties and disturbances. The unknown parameters were
estimated by the adaptive laws obtained from Lyapunov stability theory. Even if there exist unknown bounded disturbances,
the proposed controller with the estimated parameters achieved the lag synchronization of the network. Numerical results
showed the effectiveness of the proposed approach.
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