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Abstract

This article is concerned with the modified projective synchronization problem for a class of four-dimensional chaotic system
with uncertain parameters. By utilizing Lyapunov method, an adaptive control scheme for the synchronization has been presented.
The control performances are verified by a numerical simulation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A chaotic system has complex dynamical behaviors that possess some special features such as being extremely
sensitive to tiny variations of initial conditions, and having bounded trajectories in the phase space with a positive
leading Lyapunov exponent and so on. In particular, chaos synchronization has attracted a great deal of attention
from various scientific fields since Pecora and Carroll [18] introduced a method to synchronize two identical chaotic
systems with different initial conditions [1–6,9–15,17,22,23]. The idea of synchronization is to use the output of the
master system to control the slave system so that the output of the response system follows the output of the master
system asymptotically. Many methods and techniques for handling chaos control and synchronization of various chaotic
systems have been developed, such as PC method [18], OGY method [12], time-delay feedback approach [17], feedback
approach [6,9], backstepping design technique [23], adaptive method [4,5,10,13,22], linear control method [11,14],
nonlinear control scheme [1,3,15] and so on.

Recently, Qi et al. [19] developed a new four-dimensional (4D) continuous autonomous chaotic system, in which
each equation in the system contains a 3-term cross product, and analyzed basic properties of the system by means of
Lyapunov exponents and bifurcation diagrams. More recently, the adaptive synchronization problem of the 4D chaotic
system with uncertain parameters is studied by Park [16].

On the other hand, most of research on chaos synchronization efforts mentioned above have concentrated on studying
complete synchronization (CS), identical synchronization or conventional synchronization, where two coupled chaotic
systems exhibit identical oscillations. In the practical applications, CS only occurs at a certain point in the parameter
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space, and it is difficult to achieve CS except under ideal conditions. Recently, thus a more general form of synchro-
nization scheme, called generalized synchronization (GS), has been extensively investigated [20,21,7,8], where the
drive and response systems could be synchronized up to a scaling factor �. It suggests that one can achieve control of
this synchronization in general classes of chaotic systems including non-partially linear systems. More recently, Li [8]
consider a new GS method, called modified projective synchronization (MPS), where the responses of the synchronized
dynamical states synchronize up to a constant scaling matrix.

In this paper, the problem of MPS of the 4D chaotic system with uncertain parameters is investigated based on
the result [16]. For the chaotic synchronization, a class of adaptive feedback control scheme is proposed using the
Lyapunov’s direct method.

The organization of this paper is as follows. In Section 2, the problem statement and master–slave synchronization
scheme are presented for the 4D chaotic system. In Section 3, we provide a numerical example to demonstrate the
effectiveness of the proposed method. Finally, concluding remark is given in Section 4.

2. Adaptive control for modified projective synchronization of a 4D chaotic system

Consider the following 4D chaotic system [19] described by

⎧⎪⎨
⎪⎩

ż1 = a(z2 − z1) + z2z3z4,

ż2 = b(z1 + z2) − z1z3z4,

ż3 = −cz3 + z1z2z4,

ż4 = −dz4 + z1z2z3,

(1)

where z1, z2, z3 and z4 are state variables and a, b, c and d are all positive real constant parameters.
For the dynamic properties such as chaotic behavior, bifurcation and so on with respect to system (1), see Reference

[19]. For example, the system is chaotic when

(i) a = 35, b = 10, c = 1, d ∈ (0, 21.88],
(ii) b = 10, c = 1, d = 10, 23.98�a�80.65,

(iii) a = 30, b = 10, d = 10, 0 < c�15.3,

(iv) a = 30, c = 1, d = 10, 4.25 < b < 14.3.

The MPS means that the state vectors of master system with uncertain parameters and slave systems with estimate
parameters synchronize up to some nonzero scaling factor �i , that is, the state vectors of the systems become propor-
tional. Our goal is to make MPS between two 4D chaotic systems by using adaptive control scheme when the parameter
of the master system is unknown and different with those of the slave system. For the 4D chaotic system (1), the master
(or drive) and slave (or response) systems are defined below, respectively,

⎧⎪⎨
⎪⎩

ẋ1 = a(x2 − x1) + x2x3x4,

ẋ2 = b(x1 + x2) − x1x3x4,

ẋ3 = −cx3 + x1x2x4,

ẋ4 = −dx4 + x1x2x3,

(2)

and

⎧⎪⎨
⎪⎩

ẏ1 = a1(y2 − y1) + y2y3y4 + u1,

ẏ2 = b1(y1 + y2) − y1y3y4 + u2,

ẏ3 = −c1y3 + y1y2y4 + u3,

ẏ4 = −d1y4 + y1y2y3 + u4,

(3)

where xi and yi stand for state variables of the master system and the slave one, respectively, a1, b1, c1 and d1 are
uncertain parameters of the slave system which needs to be estimated, and u1, u2, u3 and u4 are the nonlinear control
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laws such that two chaotic systems can be synchronized in the sense of MPS, i.e.,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lim
t→∞ ‖x1 − �1y1‖ = 0,

lim
t→∞ ‖x2 − �2y2‖ = 0,

lim
t→∞ ‖x3 − �3y3‖ = 0,

lim
t→∞ ‖x4 − �4y4‖ = 0.

(4)

Now, define the error signals as
⎧⎪⎨
⎪⎩

e1(t) = x1 − �1y1,

e2(t) = x2 − �2y2,

e3(t) = x3 − �3y3,

e4(t) = x4 − �4y4.

(5)

From Eq. (5), we have the following error dynamics:

ė1(t) = a(x2 − x1) − �1a1(y2 − y1) + x2x3x4 − �1y2y3y4 − �1u1,

ė2(t) = b(x1 + x2) − �2b1(y1 + y2) − x1x3x4 + �2y1y3y4 − �2u2,

ė3(t) = −cx3 + �3c1y3 + x1x2x4 − �3y1y2y4 − �3u3,

ė4(t) = −dx4 + �4d1y4 + x1x2x3 − �4y1y2y3 − �4u4. (6)

For two identical chaotic systems without control (ui = 0), if the initial condition of two systems is different, i.e.,
xi(0) �= yi(0), the trajectories of the two identical systems will quickly separate each other and become irrelevant.
However, for the two controlled chaotic systems, the two systems will approach synchronization for any initial condition
by appropriate control gain and update laws for uncertain parameters. For this goal, the following control laws and
update laws for system (3) are designed:

u1 = 1

�1
[x2x3x4 − �1y2y3y4 − a1(�1 − �2)y2 + a1e2 + (k1 − a1)e1] ,

u2 = 1

�2
[−x1x3x4 + �2y1y3y4 + b1e1 + b1(�1 − �2)y1 + (b1 + k2)e2] ,

u3 = 1

�3
[x1x2x4 − �3y1y2y4 + (k3 − c1)e3] ,

u4 = 1

�4
[x1x2x3 − �4y1y2y3 + (k4 − d1)e4] , (7)

and

ȧ1 = (x2 − x1)e1,

ḃ1 = (x1 + x2)e2,

ċ1 = −x3e3,

ḋ1 = −x4e4, (8)

where ki is the control gains of positive scalars.
Then, we have the following theorem.

Theorem. For given nonzero scalars �i (i =1, 2, 3, 4), MPS between two systems (2) and (3) will occur by the adaptive
control law (7) and update law (8).
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Fig. 1. Synchronization errors.

Proof. Define a Lyapunov candidate

V = 1
2 (e2

1 + e2
2 + e2

3 + e2
4 + e2

a + e2
b + e2

c + e2
d), (9)

where ea = a1 − a, eb = b1 − b, ec = c1 − c and ed = d1 − d.
The time derivative of the Lyapunov function along the trajectory of error system (5) is

dV

dt
= ė1e1 + ė2e2 + ė3e3 + ė4e4 + ėaea + ėbeb + ėcec + ėded

= e1[a(x2 − x1) − �1a1(y2 − y1) + x2x3x4 − �1y2y3y4 − �1u1]
+ e2[b(x1 + x2) − �2b1(y1 + y2) − x1x3x4 + �2y1y3y4 − �2u2]
+ e3[−cx3 + �3c1y3 + x1x2x4 − �3y1y2y4 − �3u3]
+ e4[−dx4 + �4d1y4 + x1x2x3 − �4y1y2y3 − �4u4]
+ ȧ1(a1 − a) + ḃ1(b1 − b) + ċ1(c1 − c) + ḋ1(d1 − d). (10)

By substituting Eqs. (7) and (8) into Eq. (10), we have

dV

dt
= −eTPe, (11)

where

e =
⎡
⎢⎣

e1
e2
e3
e4

⎤
⎥⎦ , P =

⎡
⎢⎣

k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4

⎤
⎥⎦ .
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Fig. 2. Estimation of uncertain parameters.

Since V̇ is negative semidefinite, we cannot immediately obtain that the origin of error system (5) is asymptotically
stable. In fact, as V̇ �0, then e1, e2, e3, e4, ea, eb, ec, ed ∈ L∞. From the error system (5), we have ė1, ė2, ė3, ė4 ∈ L∞.
Since V̇ = −eTPe and P is a positive-definite matrix, then we have

∫ t

0
�min(P )‖e‖2 dt �

∫ t

0
eTPe dt �

∫ t

0
−V̇ dt = V (0) − V (t)�V (0),

where �min(P ) is the minimum eigenvalue of positive-definite matrix P. Thus e1, e2, e3, e4 ∈ L2. According to the
Barbalat’s lemma, we have e1(t), e2(t), e3(t), e4(t) → 0 as t → ∞. Therefore, the slave system (3) synchronizes the
master system (2) in the sense of MPS. This completes the proof. �

Remark. The convergence rate of error signals can be adjusted by the control gains ki .

3. Numerical example

In this section, to verify and demonstrate the effectiveness of the proposed method, we discuss the simulation results
for the 4D chaotic system (1). In the numerical simulations, the fourth-order Runge–Kutta method is used to solve the
systems with time step size 0.001.

For this numerical simulation, we assume that the initial condition, (x1(0), x2(0), x3(0), x4(0))= (5, −5, −3, 2) and
(y1(0), y2(0), y3(0), y4(0))= (−5, 5, 5, −5), and control gains, (k1, k2, k3, k4)= (15, 1, 1, 1), are employed. As a test
for verification of MPS of the system, let us take �1 = 1, �2 = 0.5, �3 = −2 and �4 = −1. Hence the error system has
the initial values e1(0) = 10, e2(0) = −7.5, e3(0) = 7 and e4(0) = −3. The four unknown parameters are chosen as
a=25, b=10, c=1 and d=10 in simulations so that system (1) exhibits a chaotic behavior. Synchronization of systems
(2) and (3) via adaptive control law (7) and (8) with the initial estimated parameters a1(0) = 20, b1(0) = 15, c1(0) = 5
and d1(0)= 5 are shown in Figs. 1 and 2. Fig. 1 displays the synchronization errors between systems (2) and (3). Fig. 2
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shows that the estimates a1(t), b1(t), c1(t), d1(t) of the unknown parameters converges to a = 25, b = 10, c = 1 and
d = 10 as t → ∞.

4. Concluding remark

In this article, the MPS for a 4D chaotic system, in which each equation in the system has a 3-term cross product, is
investigated. An adaptive control scheme and parameter update rule have been proposed for the synchronization. Then,
using the Lyapunov analysis, the stability of error signals for chaos synchronization is proved. Finally, a numerical
simulation has been done to show the effectiveness of control scheme proposed.
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