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Abstract

This paper concerns the stochastic stability analysis for discrete-time singular Markov jump

systems with time-varying delay and time-varying transition probabilities. The time-varying

transition probabilities in the underlying systems are assumed to be finite piecewise-constant. Based

on the delay partitioning technique, a delay-dependent stochastic stability condition is derived for

these systems, which is formulated by linear matrix inequalities and thus can be checked easily. Some

special cases are also considered. Finally, two numerical examples are provided to demonstrate the

application and less conservativeness of the developed approaches.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The analysis and controller design for singular systems have received considerable
attention in the past decades, because they can better describe the behavior of some
physical systems than state-space ones [1–3], and a great number of fundamental notions
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and results based on the theory of regular systems have been extended to the area
of singular systems [3]. On the other hand, the study on time-delay systems has became
a topic of great theoretic and practical importance because time-delays are often
encountered in various practical systems, such as chemical processes, nuclear reactors, and
biological systems, and their existence may lead to instability or significantly deteriorated
performances for the corresponding closed-loop systems [4–17]. Thus, singular systems
with time-delay have attracted particular interest in the literature, see for instance, [18–21],
and the references therein.
On the other hand, Markov jump systems described by a set of linear systems with

commutations generated by a finite-state Markov chain are very appropriate and powerful
to model changes induced by external causes, e.g., random faults, unexpected events, and
uncontrolled configuration changes [22]. Therefore, the study of Markov jump systems
with or without time-delay is of great significance and value both theoretically and
practically, and a lot of relevant results have been reported in the literature over the
past decades, see for instance, [22–27], and the references therein. Recently, as a special
class of Markov jump systems, some results on singular Markov jump systems have also
been given [28–34]. It should be pointed out that in most existing results on singular
Markov jump systems, the considered transition probabilities in the Markov process or
Markov chain are assumed to be time-invariant, i.e., the considered Markov process or
Markov chain is assumed to be homogeneous. However, the assumption cannot always be
satisfied in real applications [35–37], and thus the ideal assumption on transition
probabilities inevitably limits the applications of the established results to some extent,
although such assumption is definitely expected to simplify the study of Markov jump
systems. Therefore it is important and necessary to pay attention to the study of Markov
jump systems with time-varying transition probabilities. In [35], the problem of H1
estimation has been investigated for a class of Markov jump systems with time-varying
transition probabilities in discrete-time domain, and the mode-dependent and variation-
dependent filter has been designed such that the resulting closed-loop systems are
stochastically stable and have a guaranteed H1 filtering error performance index. In [36],
the problem of H1 control for discrete-time Markov jump systems with piecewise-
constant transition probabilities has been investigated by using the average dwell time
approach. The stability of Markov jump systems characterized by piecewise-constant
transition rates and system dynamics has been investigated in [37], where a sufficient
condition has been proposed that guarantees mean square stability under constraints on
the dwell-time between switching instants. However, no related results have been
established for the stochastically stable analysis of discrete-time singular systems with
time-varying transition probabilities and time-delay.
In this paper, the stochastic stability analysis problem is studied for discrete-time

singular Markov jump systems with time-varying delay and piecewise-constant transition
probabilities. In terms of the delay partitioning approach [38], an linear matrix inequality
(LMI)-based delay-dependent stability criterion is established for the considered systems.
The given results not only depend upon time-varying delay, but also depend upon the
number of delay partitions. Two numerical examples are given to demonstrate the
validness and the less conservatism of the obtained results.

Notation: The notations used throughout this paper are fairly standard.Rn and Rm�n denote
the n-dimensional Euclidean space and the set of all m� n real matrices, respectively.
The notation X4Y ðXZY Þ, where X and Y are symmetric matrices, means that X�Y is
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positive definite (positive semidefinite). I and 0 represent the identity matrix and a zero matrix,
respectively. The superscript ‘‘T’’ represents the transpose, and J � J denotes the Euclidean
norm of a vector and its induced norm of a matrix. ðO,F ,PÞ is a probability space, O is the
sample space,F is the s-algebra of subsets of the sample space, andP is the probability measure
on P. E½�� denotes the expectation operator with respect to some probability measure P.
For integers a and b with aob, N½a,b� ¼ fa,aþ 1, . . . ,b�1,bg. For an arbitrary matrix B and
two symmetric matrices A and C,

A B

n C

� �

denotes a symmetric matrix, where ‘‘n’’ denotes the term that is induced by symmetry. Matrices,
if their dimensions are not explicitly stated, are assumed to have compatible dimensions for
algebraic operations.

2. Preliminaries

Fix a probability space ðO,F ,PÞ, and consider discrete-time singular Markov jump
systems with time-varying delay as

Exðk þ 1Þ ¼AðrðkÞÞxðkÞ þ AdðrðkÞÞxðk�dðkÞÞ

xðkÞ ¼ fðkÞ, k 2 N½�d2,0�

(
ð1Þ

where xðkÞ 2 Rn is the state vector, and fðkÞ is a compatible vector valued initial function.
The matrix E 2 Rn�n may be singular and it is assumed that rank E ¼ rrn. AðrðkÞÞ and
AdðrðkÞÞ are known real constant matrices with appropriate dimensions. d(k) denotes time-delay
and satisfies

0od1rdðkÞrd2 ð2Þ

where d1 and d2 are known integers.
The parameter r(k) represents a Markov chain taking values in a finite set

N ¼ f1,2, . . . ,Ng with transition probability matrix Psðkþ1Þ ¼ fpsðkþ1Þij g given by

Prfrðk þ 1Þ ¼ jjrðkÞ ¼ ig ¼ psðkþ1Þij ð3Þ

where 0rpsðkþ1Þij r1 for all i,j 2 N , and
PN

j ¼ 1 p
sðkþ1Þ
ij ¼ 1 for all i 2 N . Similarly, the

parameter sðkÞ represents a Markov chain taking values in a finite setM¼ f1,2, . . . ,Mg
with transition probability matrix S¼ fqlpg given by

Prfsðk þ 1Þ ¼ pjsðkÞ ¼ lg ¼ qlp ð4Þ

where 0rqlpr1 for all l,p 2M, and
PM

p ¼ 1 qlp ¼ 1 for all l 2M. In this paper, the
Markov chain sðkÞ is assumed to be independent on F k�1 ¼ sfrð1Þ,rð2Þ, . . . ,rðk�1Þg, where
F k�1 is a s-algebra generated by frð1Þ,rð2Þ, . . . ,rðk�1Þg [35].

Before presenting the main results of this paper, we first introduce the following
definitions and lemma, which will be essential for our derivation.

Definition 1 (Xu and Lam [3], Wu et al. [34]).

1. The system (1) is said to be regular and causal, if the pair ðE,AiÞ is regular and causal for
any i 2 N and l 2M,
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2. The system (1) is said to be stochastically stable, if for any initial state ðfðkÞ,r0,s0Þ, the
following condition holds:

lim
k-þ1

EfJxðkÞJ2g ¼ 0 ð5Þ

Definition 2 (Iosifescu [39], Zhang [35]). A finite Markov chain rðkÞ 2 N is said to be
homogeneous (respectively, nonhomogeneous) if for all kZ0, the transition probability
satisfies Prfrðk þ 1Þ ¼ jjrðkÞ ¼ ig ¼ pij (respectively, Prfrðk þ 1Þ ¼ jjrðkÞ ¼ ig ¼ pijðkÞ), where
pij (or pijðkÞ) denotes a probability function.

Remark 1. According to Definition 2, it can be found that the Markov chain sðkÞ in
system (1) is homogeneous, while the Markov chain r(k) in system (1) is nonhomogeneous.
In this paper, the Markov chain r(k) in system (1) is also called as finite piecewise
homogeneous Markov chain, because the considered transition probabilities are time-
varying but invariant for the same sðkÞ, that is, piecewise-constant.

Lemma 1 (Zhu et al. [40]). For any matrix M40, integers g1 and g2 satisfying g24g1, and

vector function o : N½g1,g2�-Rn, such that the sums concerned are well defined, then

ðg2�g1 þ 1Þ
Xg2
a ¼ g1

oðaÞTMoðaÞZ
Xg2
a ¼ g1

oðaÞTM
Xg2
a ¼ g1

oðaÞ: ð6Þ

Lemma 2 (Park et al. [17], Wu et al. [41]). For any matrix ½M
n

S
M
�Z0, integers d1, d2, d(k)

satisfying d1rdðkÞrd2, and vector function xðk þ �Þ : N½�d2,�d1�-Rn, such that the sums

concerned are well defined, then

�d12

Xk�d1�1

a ¼ k�d2

zðaÞTMzðaÞr$ðkÞTO$ðkÞ ð7Þ

where d12 ¼ d2�d1, zðaÞ ¼ xðaþ 1Þ�xðaÞ and

$ðkÞ ¼ ½xðk�d1Þ
T xðk�dðkÞÞT xðk�d2Þ

T
�T O¼

�M M�S S

n �2M þ S þ ST �S þM

n n �M

2
64

3
75

In this paper, we will focus on the problem of stability analysis for discrete-time singular
Markov jump system (1). By using a Lyapunov functional, we will develop an LMI
approach to derive sufficient condition under which the underlying system (1) is regular,
causal and stochastically stable.

3. Main results

In this section, the stability is discussed for system (1) by the delay partitioning
approach. Before proceeding further, for the sake’s of vector and matrix representation,
the followings are denoted:

UðtÞ ¼ xðkÞT x k�
1

m
d1

� �T

x k�
2

m
d1

� �T

. . . x k�
m�1

m
d1

� �T
" #T
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ZðkÞ ¼ ½UðkÞT xðk�d1Þ
T
�T

zðkÞ ¼ ½ZðkÞT xðk�dðkÞÞT xðk�d2Þ
T
�T

W1 ¼ ½Imn 0mn�n�

W2 ¼ ½0mn�n Imn�

gl ¼ ½0n�ðl�1Þn In 0n�ðm�lþ1Þn�, l ¼ 1,2, . . . ,mþ 1

This way, system (1) can be rewritten as

Exðk þ 1Þ ¼Aig1ZðkÞ þ Adixðk�dðkÞÞ

xðkÞ ¼ fðkÞ, k 2 N½�d2,0�

(
ð8Þ

Theorem 1. Given an integer m40, system (1) is regular, causal and stochastically stable, if

there exist matrices Pi,l40, Q40, Z140, Z240, U40, Si40 ði¼ 1,2, . . . ,mþÞ, Yi,l , and

Wi,l such that for any i 2 N and l 2M,

X11 X12 X13 X14 gT
1 AT

i X l
i

n X22 X23 AT
diD AT

diX
l
i

n n X33 0 0

n n n �D 0

n n n n �X l
i

2
6666664

3
7777775
o0 ð9Þ

Smþ1 Y i,l

n Smþ1

" #
Z0 ð10Þ

where d12 ¼ d2�d1, X l
i ¼

PM
p ¼ 1 qlp

PN
j ¼ 1 p

p
ijPj,p, R 2 Rn�ðn�rÞ is any matrix with full column

and satisfies ETR¼ 0, and D¼ ðd1=mÞ2
Pm

i ¼ 1 Si þ d2
12Smþ1 and

X11 ¼�gT
1 ETPi,lEg1 þWT

1 QW 1�WT
2 QW 2�

Xm

i ¼ 1

ðgi�giþ1Þ
TETSiEðgi�giþ1Þ

þ gT
mþ1Z1gmþ1 þ ðd12 þ 1ÞgT

mþ1Z2gmþ1�gT
mþ1E

TSmþ1Egmþ1

þ gT
1 Wi,lR

TAig1 þ gT
1 AT

i RWT
i,lg1

X12 ¼ gT
mþ1ETSmþ1E�gT

mþ1ETYi,lE þ gT
1 Wi,lR

TAdi

X13 ¼ gT
mþ1ETYi,lE

X14 ¼ gT
1 ðAi�EÞTD

X22 ¼�Z2�2ETSmþ1E þ ETYi,lE þ ETYT
i,lE

X23 ¼�ETYi,lE þ ETSmþ1E

X33 ¼�Z1�ETSmþ1E

Proof. We first proof the regularity and causality of system (1) under the given condition.
To this end, we choose two nonsingular matrices M and G such that

MEG¼
Ir 0

0 0

� �
ð11Þ

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2889–2902 2893
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Set

MAiG¼
A1i A2i

A3i A4i

" #
, GTWi,l ¼

W 1
i,l

W 2
i,l

" #
, M�TR¼

0

I

� �
F ð12Þ

where F 2 Rðn�rÞ�ðn�rÞ is any nonsingular matrix. It can be seen that X11o0 implies

�ETPi,lE þWi,lR
TAi þ AT

i RWT
i,l�ETS1Eo0 ð13Þ

Pre-multiplying and post-multiplying Eq. (13) by GT and G, respectively, we have
W 2

i,lF
TA4i þ AT

4iFW 2T
i,l o0, which implies A4i is nonsingular. Thus, the pair ðE,AÞ is regular

and causal, which implies system (1) is regular and causal.
Next we will show that system (1) is stochastically stable under the given condition.

To the end, we define dðkÞ ¼ xðk þ 1Þ�xðkÞ and consider the following Lyapunov
functional for system (1):

V ðxðkÞ,k,rðkÞ,sðkÞÞ ¼
X4
l ¼ 1

VlðxðkÞ,k,rðkÞ,sðkÞÞ ð14Þ

where

V1ðxðkÞ,k,rðkÞ,sðkÞÞ ¼ xðkÞTETPrðkÞ,sðkÞExðkÞ

V2ðxðkÞ,k,rðkÞ,sðkÞÞ ¼
Xk�1

s ¼ k�d1=m

UðsÞTQUðsÞ

V3ðxðkÞ,k,rðkÞ,sðkÞÞ ¼
Xk�d1�1

s ¼ k�d2

xðsÞTZ1xðsÞ þ
X�d1þ1

a ¼ �d2þ1

Xk�d1�1

s ¼ k�1þa

xðsÞTZ2xðsÞ

V4ðxðkÞ,k,rðkÞ,sðkÞÞ ¼
d1

m

Xm

i ¼ 1

X�ðði�1Þ=mÞd1�1

g ¼ �ði=mÞd1

Xk�1
s ¼ kþg

dðsÞTETSiEdðsÞ

þd12

X�d1�1

g ¼ �d2

Xk�1
s ¼ kþg

dðsÞTETSmþ1EdðsÞ

Letting E½DV ðkÞ� ¼ E½V ðk þ 1,xðk þ 1Þ,rðk þ 1Þ,sðk þ 1ÞjxðkÞ,rðkÞ ¼ i,sðkÞ ¼ lÞ�V ðk,xðkÞ,
i,lÞ�, along the solution of system (1), we have that

E½DV1ðkÞ� ¼ xðk þ 1ÞTETL̂ilExðk þ 1Þ�xðkÞTETPi,lExðkÞ ð15Þ

where

L̂il ¼
XM
p ¼ 1

XN

j ¼ 1

Prfrðk þ 1Þ ¼ j,sðk þ 1Þ ¼ pjrðkÞ ¼ i,sðkÞ ¼ lgPj,p:

It is noted that

Prfsðk þ 1Þ ¼ pjrðkÞ ¼ i,sðkÞ ¼ lg ¼ qlp

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2889–29022894
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and thus

Prfrðk þ 1Þ ¼ j,sðk þ 1Þ ¼ pjrðkÞ ¼ i,sðkÞ ¼ lg ¼ Prfrðk þ 1Þ ¼ jjrðkÞ ¼ i,sðkÞ
¼ l,sðk þ 1Þ ¼ pgPrfsðk þ 1Þ ¼ pjrðkÞ ¼ i,sðkÞ ¼ lg

¼ pp
ijqlp

which means L̂il ¼X l
i . Therefore, we have that

E½DV1ðkÞ� ¼ xðk þ 1ÞTETX l
i Exðk þ 1Þ�xðkÞTETPi,lExðkÞ ¼ xðk þ 1ÞTETX l

i Exðk þ 1Þ

�ZðkÞTgT
1 ETPi,lEg1ZðkÞ ¼ ðAig1ZðkÞ þ Adixðk�dðkÞÞÞTX l

i ðAig1ZðkÞ
þAdixðk�dðkÞÞÞ�ZðkÞTgT

1 ETPi,lEg1ZðkÞ ð16Þ

On the other hand,

E½DV2ðkÞ� ¼ UðkÞTQUðkÞ�U k�
d1

m

� �T

QU k�
d1

m

� �
¼ ZðkÞTWT

1 QW 1ZðkÞ�ZðkÞ
TWT

2 QW 2ZðkÞ ð17Þ

E½DV3ðkÞ� ¼ xðk�d1Þ
TZ1xðk�d1Þ�xðk�d2Þ

TZ1xðk�d2Þ þ ðd12 þ 1Þxðk�d1Þ
TZ2xðk�d1Þ

�
Xk�d1

s ¼ k�d2

xðsÞTZ2xðsÞrZðkÞTgTmþ1Z1gmþ1ZðkÞ�xðk�d2Þ
TZ1xðk�d2Þ

þðd12 þ 1ÞZðkÞTgT
mþ1Z2gmþ1ZðkÞ�xðk�dðkÞÞTZ2xðk�dðkÞÞ ð18Þ

E½DV4ðkÞ� ¼
d1

m

� �2Xm

i ¼ 1

dðkÞTETSiEdðkÞ�
d1

m

Xm

i ¼ 1

Xk�ðði�1Þ=mÞd1�1

s ¼ k�ði=mÞd1

dðsÞTETSiEdðsÞ

þd2
12dðkÞ

TETSmþ1EdðkÞ�d12

Xk�d1�1

s ¼ k�d2

dðsÞTETSmþ1EdðsÞrððAi�EÞg1ZðkÞ

þAdixðk�dðkÞÞÞTDððAi�EÞg1ZðkÞ þ Adixðk�dðkÞÞÞ

�
Xm

i ¼ 1

ZðkÞTðgi�giþ1Þ
TETSiEðgi�giþ1ÞZðkÞ þ

ZðkÞ

xðk�dðkÞÞ

xðk�d2Þ

2
64

3
75
T

G

ZðkÞ

xðk�dðkÞÞ

xðk�d2Þ

2
64

3
75 ð19Þ

where Lemmas 1 and 2 are applied, and

G¼

�gT
mþ1ETSmþ1Egmþ1 gT

mþ1E
TSmþ1E�gTmþ1E

TYi,lE gT
mþ1E

TYi,lE

n �2ETSmþ1E þ ETYi,lE þ ETYT
i,lE �ETYi,lE þ ETSmþ1E

n n �ETSmþ1E

2
664

3
775

Furthermore, it can be easily obtained from Eq. (8) that

2ZðkÞTgT
1 Wi,lR

TðAig1ZðkÞ þ Adixðk�dðkÞÞÞ ¼ 0 ð20Þ

Thus, adding the left-hand side of Eq. (20) to E½DV ðkÞ�, we can get from Eqs. (16)–(19)
that

E½DV ðkÞ�rzðkÞTYzðkÞ ð21Þ

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2889–2902 2895
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where

Y¼

X11 X12 X13

n X22 X23

n n X33

2
64

3
75þ

gT
1 AT

i

AT
di

0

2
64

3
75X l

i

gT
1 AT

i

AT
di

0

2
64

3
75
T

þ

gT
1 ðAi�EÞT

AT
di

0

2
64

3
75D

gT
1 ðAi�EÞT

AT
di

0

2
64

3
75
T

Based on Schur complement, we can obtain from Eq. (9) that Yo0. Therefore, there exists
a scalar a40 such that

E½DV ðkÞ�r�aJxðkÞJ2 ð22Þ

Thus, we can conclude that

Xk

i ¼ 0

E½JxðiÞJ2�r
1

a
E½V ð0Þ�o1 ð23Þ

which implies
P1

i ¼ 0 E½JxðiÞJ2� converge, and thus it can be found that Eq. (5) holds. Based
on Definition 1, system (1) is stochastically stable. This completes the proof. &

Remark 2. Theorem 1 gives a criterion guaranteeing the regularity, causality and
stochastic stability of system (1), which is formulated by LMIs and can readily be solved
by standard numerical software. It should be pointed out that the condition is independent
of the choice of R, which is introduced by Eq. (20).

When M¼ f1g, the piecewise homogeneous Markov jump system (1) reduces to a
homogeneous Markov jump system, and Theorem 1 reduces the following corollary.

Corollary 1. Given an integer m40, system (1) is regular, causal and stochastically stable, if

there exist matrices Pi40, Q40, Z140, Z240, U40, Si40 ði¼ 1,2, . . . ,mþ 1Þ, Yi, and

Wi such that for any i 2 N :

X̂11 X̂12 X̂13 X14 gT
1 AT

i Xi

n X̂22 X̂23 AT
diD AT

diXi

n n X33 0 0

n n n �D 0

n n n n �Xi

2
6666664

3
7777775
o0 ð24Þ

Smþ1 Yi

n Smþ1

" #
Z0 ð25Þ

where Xi ¼
PN

j ¼ 1 pijPj, and

X̂11 ¼�gT
1 ETPiEg1 þWT

1 QW 1�WT
2 QW 2�

Xm

i ¼ 1

ðgi�giþ1Þ
TETSiEðgi�giþ1Þ

þgT
mþ1Z1gmþ1 þ ðd12 þ 1ÞgT

mþ1Z2gmþ1�gT
mþ1E

TSmþ1Egmþ1 þ gT
1 WiR

TAig1

þgT
1 AT

i RWT
i g1

X̂12 ¼ gT
mþ1E

TSmþ1E�gT
mþ1E

TY iE þ gT
1 WiR

TAdi

X̂13 ¼ gT
mþ1E

TY iE

Z.-G. Wu et al. / Journal of the Franklin Institute 349 (2012) 2889–29022896
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X̂22 ¼�Z2�2ETSmþ1E þ ETY iE þ ETYT
i E

X̂23 ¼�ETYiE þ ETSmþ1E

the other parameters follow the same definitions as those in Theorem 1.

Remark 3. When N ¼ f1g, which means that Markov jumping parameters disappear,
Corollary 1 reduces to Corollary 1 in [41]. Therefore, Theorem 1 and Corollary 1 can be
viewed as an extension of the existing result on stability analysis for discrete-time singular
time-delay systems to discrete-time singular time-delay systems with Markov jumping
parameters.

Generally speaking, for some practical systems, the transition probabilities of the
Markov chain we get will never be precise, that is, some elements in transition probability
matrix are unknown [42–45]. For instance, whenM¼ f1,2,3,4g, the transition probability
matrix S may be

S¼

q11 q̂12 q13 q̂14

q̂21 q̂22 q̂23 q24

q31 q̂32 q33 q̂34

q̂41 q̂42 q43 q44

2
66664

3
77775

where the unaccessible elements are labeled with a hat ‘‘�̂’’. For notation clarity, we denote
that for each l 2M:

Ml
K ¼ fp : qlp is knowng

Ml
UK ¼ fp : qlp is unknowng ð26Þ

Also, we denote ql
K ¼

P
p2Ml

K
qlp.

The following corollary presents the result on the stability analysis for system (1) with
partially unknown transition probabilities.

Corollary 2. Given an integer m40, system (1) with partially unknown transition

probabilities is regular, causal and stochastically stable, if there exist matrices Pi,l40,
Q40, Z140, Z240, U40, Si40 ði¼ 1,2, . . . ,mþ 1Þ, Yi,l , and Wi,l such that for any i 2 N
and l 2M, Eqs. (11) and (27) hold,

X11 X12 X13 X14 gT
1 AT

i ðX̂
l

i þ X
ˇ lp

i Þ

n X22 X23 AT
diD AT

diðX̂
l

i þ X
ˇ lp

i Þ

n n X33 0 0

n n n �D 0

n n n n �X̂
l

i�X
ˇ lp

i

2
6666666664

3
7777777775
o0 ð27Þ

where p 2Ml
UK and

X̂
l

i ¼
X

p2Ml
K

qlp

XN

j ¼ 1

pp
ijPj,p
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X
ˇ lp

i ¼ ð1�ql
KÞ
XN

j ¼ 1

pp
ijPj,p

the other parameters follow the same definitions as those in Theorem1.

Proof. It is clear that 0rql
Kr1. we exclude the case of ql

K ¼ 1 due to the fact that in this
case all the elements in the lth row are known. When 0rql

Ko1, it can be found from
Eq. (9) that

X11 X12 X13 X14 gT
1 AT

i X̂
l

i þ
P

p2Ml
UK

q̂lp

XN

j ¼ 1

pp
ijPj,p

0
@

1
A

n X22 X23 AT
diD AT

di X̂
l

i þ
P

p2Ml
UK

q̂lp

XN

j ¼ 1

pp
ijPj,p

0
@

1
A

n n X33 0 0

n n n �D 0

n n n n �X̂
l

i�
P

p2Ml
UK

q̂lp

XN

j ¼ 1

pp
ijPj,p

2
666666666666666664

3
777777777777777775

o0 ð28Þ

According to the fact that 0rq̂lp=ð1�ql
KÞr1 and

P
p2Ml

UK
q̂lp=ð1�ql

KÞ ¼ 1, we have that

Lil ¼
X

p2Ml
UK

q̂lp

1�ql
K

X11 X12 X13 X14 gT
1 AT

i ðX̂
l

i þ X
ˇ lp

i Þ

n X22 X23 AT
diD AT

diðX̂
l

i þ X
ˇ lp

i Þ

n n X33 0 0

n n n �D 0

n n n n �X̂
l

i�X
ˇ lp

i

2
6666666664

3
7777777775

ð29Þ

Thus, Eq. (27) holds implies Eq. (29) holds. This completes the proof. &

4. Numerical examples

This section presents two numerical examples that demonstrate the effectiveness of the
methods described in the above section.

Example 1. Consider system (1) with

A1 ¼
6:1 10:4

7:15 11:6

� �
, Ad1 ¼

�1:1 �2

�1:4 �2:5

� �

A2 ¼
6:37 10:74

7:48 12:01

� �
, Ad2 ¼

�0:92 �1:62

�1:13 �1:93

� �

E ¼
3 6

2 4

� �
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and the transition probability matrix

P1 ¼
0:45 0:55

0:7 0:3

� �

By using the methods of [28–31] and Corollary 1 in this paper, the allowable maximum
values of d2 for various d1 that guarantees the regularity, causality and stochastic stability
of the considered system are presented in Table 1, from which we can find that our result
has less conservatism than those in [28–31].

Example 2. Consider the dynamic Leontief model of economic systems, which describes
the time pattern of production sectors given by [2]

xðkÞ ¼MxðkÞ þ Gðxðk þ 1Þ�xðkÞÞ þHuðkÞ ð30Þ

It is clear that Eq. (30) can be rewritten as

Gxðk þ 1Þ ¼ ðI�M þ GÞxðkÞ�HuðkÞ ð31Þ

Typically the capital coefficient matrix G has nonzero elements in only a few rows,
corresponding to the fact that capital is formed from only a few sectors. Thus, the system
(31) is a typical discrete-time singular system, since G is often singular.

In this example, we choose

uðkÞ ¼K1xðkÞ þ K2xðk�dðkÞÞ ð32Þ

In practical control system, actuators may fail during the course of system operation and
the faults of the actuators may be random in nature. We make use of the following fault
model to represent the stochastic behavior of the actuator faults:

uF ðkÞ ¼ F ðrðkÞÞuðkÞ ð33Þ

where F ðrðkÞÞ ¼ diagff1ðrðkÞÞ,f2ðrðkÞÞ, . . . ,fpðrðkÞÞg, 0rfqðrðkÞÞr1 ðq¼ 1,2, . . . ,pÞ, 8rðkÞ
2 N . Obviously, when fqðrðkÞÞ ¼ 0, the fault model (33) corresponds to the q-th actuator
outage case. When 0ofqðrðkÞÞo1, it corresponds to the case of partial failure of the q-th
actuator. When fqðrðkÞÞ ¼ 1, it corresponds to the case of no fault in the q-th actuator.

Here, we consider a Leontief model described by

G¼
1 0

0 0

� �
, M ¼

2:04 1

0:8 1

� �
, H ¼

�1

3:05

� �

Table 1

Comparison of the allowable upper bound d2.

d1 2 4 6 8 10 12

[29,31] 12 13 14 15 16 17

[30] 14 14 15 16 18 19

[28] 14 15 16 17 18 19

Corollary 1 (m¼ d1) 18 19 21 23 25 27
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Then system (31) can be rewritten as

1 0

0 0

� �
xðk þ 1Þ ¼

�0:04 �1

�0:8 0

� �
xðkÞ�

�1

3:05

� �
uðkÞ ð34Þ

On the other hand, choose

K1 ¼ ½�0:01 0:6�, K2 ¼ ½0:1676 0:1170� ð35Þ

and F1¼0.3 and F2¼0.8, and suppose the transition probability matrices

P1 ¼
0:1 0:9

0:3 0:7

� �
, P2 ¼

0:2 0:8

0:45 0:55

� �

P3 ¼
0:3 0:7

0:55 0:45

� �
, P4 ¼

0:4 0:6

0:5 0:5

� �

and

S¼

0:3 0:2 0:1 0:4

0:3 0:2 0:3 0:2

0:1 0:1 0:5 0:3

0:2 0:2 0:1 0:5

2
6664

3
7775

Thus, the resultant closed-loop system can be described by discrete-time singular Markov
jump system (1) with

A1 ¼
�0:0430 �0:8200

�0:7909 �0:5490

� �
, Ad1 ¼

0:0503 0:0351

�0:1534 �0:1071

� �

A2 ¼
�0:0480 �0:5200

�0:7756 �1:4640

� �
, Ad2 ¼

0:1341 0:0936

�0:4089 �0:2855

� �

E ¼
1 0

0 0

� �

It is assumed that d1 ¼ 4 and d2 ¼ 6. Applying Matlab Toolbox, by Theorem 1 with m¼2,
it is found that system (1) with given parameters is regular, causal and stochastically stable.

5. Conclusions

The problem of stochastic stability analysis has been investigated in this paper for
discrete-time singular Markov jump systems with time-varying delay and piecewise-
constant transition probabilities. Based on the delay partitioning technique, a Lyapunov
functional has been introduced to arrive at the delay-dependent sufficient condition that
warrants the regularity, causality, and stochastic stability of the considered systems.
The obtained delay-dependent results rely upon the partitioning size. The results on some
special cases have also been established. Finally, two numerical examples have been given
to show the reduction of conservatism and effectiveness of the developed approaches. We
would like to point out that it is possible to extend our main results to more general
discrete-time singular Markov jump systems with parameter uncertainties, mixed time-
delays, and nonlinear disturbances. The results will appear in the near future.
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