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Stability for Neural Networks With Time-Varying
Delays via Some New Approaches

Oh-Min Kwon, Myeong-Jin Park, Sang-Moon Lee, Ju H. Park, and Eun-Jong Cha

Abstract— This paper considers the problem of delay-
dependent stability criteria for neural networks with time-
varying delays. First, by constructing a newly augmented
Lyapunov–Krasovskii functional, a less conservative stability
criterion is established in terms of linear matrix inequalities.
Second, by proposing novel activation function conditions which
have not been proposed so far, further improved stability criteria
are proposed. Finally, three numerical examples used in the
literature are given to show the improvements over the existing
criteria and the effectiveness of the proposed idea.

Index Terms— Lyapunov method, neural networks, stability,
time-varying delays.

I. INTRODUCTION

THE stability analysis of neural networks is an interesting
issue because it can be applied to various fields, including

reconstructing a moving image, signal processing, pattern
recognition, designing associative memories, fixed-point com-
putations, and other scientific areas [1]–[7]. It is no less
important that the equilibrium points of the designed network
are stable because the application of neural networks is heavily
dependent on the dynamic behavior of the networks. Also, on
account of the occurrence of integration and communication
delays in the hardware implementation of neural networks,
many researchers have devoted time and effort to delay-
dependent stability analysis of neural networks with time
delays [8]–[27], because it is well known that delay-dependent
stability criteria are generally less conservative than delay-
independent ones when the size of the time delay is small.

In the field of delay-dependent stability analysis of neural
networks, a lot of weight has been placed on the reduction
of conservatism of the stability criteria. It is well recognized
that an important index for checking the conservatism of
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stability criteria is to get maximum delay bounds such that the
designed networks are asymptotically stable for any delay less
than the maximum delay bounds. Therefore, the construction
of a suitable Lyapunov–Krasovskii (LK) functional and its
estimation calculated by taking the time derivative of the
chosen LK functional play key roles in enhancing the feasible
region of stability criteria.

To do this, Zhu and Yang [19] proposed a new type of
Lyapunov functional to ensure larger delay bounds for neural
networks with time-varying delays. By taking more informa-
tion about time-varying delays and states as augmented vectors
and constructing a new LK functional, some new results on
stability criteria for neural networks with time-varying delays
were proposed [20]. In [21], a novel method, named the
delay-slope-dependent method, was proposed by using the
fact the neuron activation functions are sector-bounded and
nondecreasing.

Recently, to reduce the conservatism of stability criteria
in the field of delay-dependent stability analysis, the popular
method has been a delay-partitioning method which divides
delay interval into some subintervals. As a tradeoff between
the time consumed and improvement of the feasible region, the
delay-partition number has been chosen as two in many works
[22]–[27]. In this regard, in [22] and [23], by utilizing different
free-weighting matrices in two delay subintervals, some new
methods were proposed to reduce the conservatism of the
stability criteria for neural networks with time-varying delays.
Recently, by taking a new augmented vector, which includes
the information of time-varying delays, a new asymptotic
stability criterion was proposed in [24], and its extended
result was presented in [25] by constructing a triple integral
form of the LK functional to improve the feasible region of
stability criteria for neural networks with time-varying delays.
Very recently, by utilizing the method of [22], exponential
stability of neural networks with interval time-varying delays
and general activation functions was investigated in [27].
In [28]–[30], a generalized delay-partitioning method to
enhance the feasible region of stability criteria was proposed.
One of the main advantages of the methods utilized in
[22]–[30] is that they can obtain tighter upper bounds by
calculating the time derivative of the LK functional, which
leads to less conservative results. However, when the delay-
partitioning number increases, the matrix formulation becomes
more complex and the computational burden and time con-
sumption grow bigger. It should be noted that, as mentioned
in [31], the ability and performance of neural networks are
influenced by the choice of the activation functions. Therefore,
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it is natural to look for an alternative view to reduce the
conservatism of stability criteria.

Motivated by the above discussion, some new delay-
dependent stability criteria for neural networks with time-
varying delays in which both the upper and lower bounds
of delay derivative are available are proposed in this paper
by employing different approaches. The contributions of this
paper are threefold.

1) Unlike the method of [22]–[30], no delay-partitioning
methods are utilized. Instead, by taking more informa-
tion of states and activation functions as augmented
vectors and constructing a new LK functional, an aug-
mented LK functional is proposed. Then, inspired by the
work of [32]–[34], a sufficient condition, such that the
considered neural networks are asymptotically stable, is
derived in Theorem 1.

2) Based on the result of Theorem 1, a novel approach par-
titioning the bounding of activation function is proposed
in Theorem 2. As a tradeoff between the time consumed
and improvement of the feasible region, the bounding of
the activation function is divided into two subintervals.

3) With the same LK functional considered in Theorem
two, a new activation function condition, which has not
been considered so far in the literature, is proposed and
utilized in Theorem 3 to reduce the conservatism of the
stability criterion.

By utilizing the results of Theorem 3, when only the upper
bound of the delay derivative of the time-varying delay is
available, the corresponding stability criterion is proposed in
Corollary 1. Lastly, when the information about the delay
derivative of time-varying delay is unknown, Corollary 2 is
presented as a special case of Corollary 1. Through three
numerical examples taken from the literature, it is shown that,
in spite of not employing delay-partitioning approaches, the
proposed stability criteria can provide larger delay bounds than
the recent results in which delay-partitioning techniques were
utilized.

Notation: R
n is the n-dimensional Euclidean space, and

R
m×n denotes the set of m × n real matrix. ‖ · ‖ refers to

the Euclidean vector norm and the induced matrix norm. For
symmetric matrices X and Y , the notation X > Y (respec-
tively, X ≥ Y ) means that the matrix X − Y is positive defi-
nite, (respectively, nonnegative). diag {· · · } denotes the block
diagonal matrix. � represents the elements below the main
diagonal of a symmetric matrix. X[ f (t)] ∈ R

m×n means that
the elements of matrix X[ f (t)] include the scalar value of f (t).

II. PROBLEM STATEMENTS

Consider the following neural networks with discrete time-
varying delays:

ẏ(t) = −Ay(t) + W0g(y(t)) + W1g(y(t − h(t))) + b (1)

where y(t) = [y1(t), . . . , yn(t)]T ∈ R
n is the neuron

state vector, n denotes the number of neurons in a neural
network, g(y(t)) = [g1(y1(t)), . . . , gn(yn(t))]T ∈ R

n means
the neuron activation functions, g(y(t − h(t))) = [g1(y1(t −
h(t))), . . . , gn(yn(t − h(t))) ]T ∈ R

n , A = diag{ai} ∈ R
n×n

is a positive diagonal matrix, W0 = (w0
i j )n×n ∈ R

n×n and
W1 = (w1

i j )n×n ∈ R
n×n are the interconnection matrices

representing the weight coefficients of the neurons, and b =
[b1, b2, . . . , bn]T ∈ R

n represents a constant input vector.
The delay h(t) is a time-varying continuous function that

satisfies the following three cases, where hU , h Dl , and h Du

are known constants.
C1) Time-varying delay: 0≤h(t)≤hU ,h Dl ≤ ḣ(t)≤hDu<1.
C2) Time-varying delay: 0 ≤ h(t) ≤ hU , ḣ(t) ≤ h Du.
C3) Time-varying delay: 0 ≤ h(t) ≤ hU .
For C1, let us define ∇d in the following set:

�d :=
{
∇d |∇d ∈ conv

{
∇1

d , ∇2
d

}}
(2)

where conv denotes the convex hull, ∇1
d = hl

D , and ∇2
d = hu

D .
Then, there exists a parameter θ > 0 such that ḣ(t) can be
expressed as a convex combination of the vertices as follows:

ḣ(t) = θ∇1
d + (1 − θ)∇2

d . (3)

If a matrix M[ḣ(t)] is affinely dependent on ḣ(t), then M[ḣ(t)]
can be expressed as convex combinations of the vertices

M[ḣ(t)] = θ M[∇1
d

] + (1 − θ)M[∇2
d

]. (4)

From (4), if a stability condition is affinely dependent on ḣ(t),
then it needs only to check at the vertex values of ḣ(t) instead
of checking all values of ḣ(t) [35]. This property will be
utilized in Section III.

The neuron activation functions satisfy the following
assumption.

Assumption 1: The neuron activation functions gi (·), i =
1, . . . , n are continuous, bounded, and satisfy

k−
i ≤ gi(u) − gi(v)

u − v
≤ k+

i , u, v ∈ R

u �= v, i = 1, . . . , n (5)

where k+
i and k−

i are constants.
Remark 1: In Assumption 1, k+

i and k−
i can be allowed to

be positive, negative, or zero. As mentioned in [21], Assump-
tion 1 describes the class of globally Lipschitz continuous
and monotone nondecreasing activation when k−

i = 0 and
k+

i > 0. And the class of globally Lipschitz continuous and
monotone increasing activation functions can be described
when k+

i > k−
i > 0.

For simplicity, in stability analysis of (1), the equilibrium
point y∗ = [

y∗
1 , . . . , y∗

n

]T whose uniqueness has been reported
in [21] is shifted to the origin by utilizing the transformation
x(·) = y(·) − y∗, which leads (1) to the following form:

ẋ(t) = −Ax(t) + W0 f (x(t)) + W1 f (x(t − h(t))) (6)

where x(t) = [x1(t), . . . , xn(t)]T ∈ R
n is the state vector of

the transformed system f (x(t)) = [ f1(x(t)), . . . , fn(x(t))]T

and f j (x j (t)) = g j (x j (t) + y∗
j ) − g j (y∗

j ) with f j (0) = 0( j =
1, . . . , n).

It should be noted that the activation functions fi (·) (i =
1, . . . , n) satisfy the following condition [15]:

k−
i ≤ fi (u) − fi (v)

u − v
≤ k+

i , u, v ∈ R,

u �= v, i = 1, . . . , n. (7)
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If v = 0 in (7), then we have

k−
i ≤ fi (u)

u
≤ k+

i ∀ u �= 0, i = 1, . . . , n (8)

which is equivalent to
[

fi (u) − k−
i u

] [
fi (u) − k+

i u
] ≤ 0, i = 1, . . . , n. (9)

The objective of this paper is to investigate the delay-
dependent stability analysis of (6), which will be done in
Section III.

Before deriving our main results, we state the following
lemmas.

Lemma 1: For any constant positive-definite matrix M ∈
R

n×n and β ≤ s ≤ α, the following inequalities hold:

(α − β)

∫ α

β
ẋ T (s)Mẋ(s)ds

≥
(∫ α

β
ẋ(s)ds

)T

M

(∫ α

β
ẋ(s)ds

)
(10)

(α − β)2

2

∫ α

β

∫ α

s
ẋ T (u)Mẋ(u)duds

≥
(∫ α

β

∫ α

s
ẋ(u)duds

)T

M

(∫ α

β

∫ α

s
ẋ(u)uds

)
. (11)

Proof: According to Jensen’s inequality in [36], one can
obtain (10). Moreover, the following inequality holds:

(α − s)
∫ α

s
ẋ T (u)Mẋ(u)du

≥
(∫ α

s
ẋ(u)du

)T

M

(∫ α

s
ẋ(u)du

)
. (12)

By Schur complements [37], (12) is equivalent to
[ ∫ α

s ẋ T (u)Mẋ(u)du
∫ α

s ẋ T (u)du∫ α
s ẋ(u)du (α − s)M−1

]
≥ 0. (13)

Integration of (13) from β to α yields
[ ∫ α

β

∫ α
s ẋ T (u)Mẋ(u)duds

∫ α
β

∫ α
s ẋ T (u)duds∫ α

β

∫ α
s ẋ(u)duds

∫ α
β (α − s)M−1ds

]
≥ 0. (14)

Therefore, (14) is equivalent to (11) according to Schur
complements. This completes the proof. �

Lemma 2 [38]: Let ζ ∈ R
n , � = �T ∈ R

n×n , and B ∈
R

m×n such that rank(B) < n. Then, the following statements
are equivalent:

1) ζ T �ζ < 0, Bζ = 0, ζ �= 0;
2) (B⊥)T �B⊥ < 0

where B⊥ is a right orthogonal complement of B .

III. MAIN RESULTS

In this section, new delay-dependent stability criteria for
neural networks with time-varying delays (6) are derived.
For simplicity of matrix representation, ei (i = 1, . . . , 13) ∈
R

13n×n are defined as block entry matrices. (For example,

eT
3 = [0 0 I 0 0 0 0 0 0 0 0 0 0]). The notations for some

matrices are defined as follows:
ζ T (t) =

[
x T (t) x T (t − h(t)) x T (t − hU ) ẋ T (t)

× ẋ T (t − hU )

∫ t

t−h(t)
x T (s)ds

×
∫ t−h(t)

t−hU

x T (s)ds f T (x(t))

× f T (x(t − h(t))) f T (x(t − hU ))

×
∫ t

t−h(t)
f T (x(s))ds

∫ t−h(t)

t−hU

f T (x(s))ds

× ẋ T (t − h(t))
]

� = [−A 0 0 −I 0 0 0 W0 W10 0 0 0
]

αT (t) =
[

xT (t) x T (t − hU )
∫ t

t−hU
x T (s)ds

∫ t
t−hU

f T (x(s))ds x T (t − h(t))
]

βT (t) = [
x T (t) ẋ T (t) f T (x(t))

]

	1 = [
e1 e3 e6 + e7 e11 + e12 e2

]

	2 = [
e4 e5 e1 − e3 e8 − e10 e13

]

	3 = [
e1 e4 e8

]
, 	4 = [

e3 e5 e10
]

	5 = [
e2 e13 e9

]

	6 = [
e6 e1 − e2 e11 e7 e2 − e3 e12

]

ϒ1[∇k
d ] = diag{I, I, I, I, (1 − ∇k

d )I }
�1 = [e8 − e1 Km] �1eT

4 + e4�1 [e8 − e1 Km]T

+ [
e1K p − e8

]
�1eT

4 + e4�1
[
e1K p − e8

]T

+ [e10 − e3Km ] �3eT
5 + e5�3 [e10 − e3 Km ]T

+ [
e3K p − e10

]
�3eT

5 + e5�3
[
e3 K p − e10

]T

�2[∇k
d ] = (1 − ∇k

d )
{

[e9 − e2 Km ] �2eT
13

+ e13�2 [e9 − e2 Km ]T + [
e2 K p − e9

]

× �2eT
13 + e13�2

[
e2 K p − e9

]T
}

 =
(

h2
U /2

)2
e4 Q3eT

4

−(hU e1 − e6 − e7)Q3(hU e1 − e6 − e7)
T

� = hU e1 Q4eT
1 + hU e4 Q5eT

4 + e1 P1eT
1

+e2(−P1 + P2)e
T
2 − e3 P2eT

3

� = − [e8 − e1Km ] H1
[
e8 − e1 K p

]T

− [
e8 − e1K p

]
H1 [e8 − e1Km ]T

− [e9 − e2 Km] H2
[
e9 − e2 K p

]T

− [
e9 − e2 K p

]
H2 [e9 − e2 Km ]T

− [e10 − e3Km ] H3
[
e10 − e3 K p

]T

− [
e10 − e3K p

]
H3 [e10 − e3Km ]T

�1[∇k
d ] = 	1Rϒ1[∇k

d ]	
T
2 + 	2ϒ

T
1[∇k

d ]R	T
1 + 	3N	T

3

−	4N	T
4 + �1 + �2[∇k

d ] + 	3Q1	
T
3

+(1 − ∇k
d )	5(−Q1 + Q2)	

T
5 − 	4Q2	

T
4

+h2
U 	3G	T

3 − 	6

[G S
� G

]
	T

6 +  + �. (15)
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Now, the following theorem is given by the first main result.
Theorem 1: For a given positive scalar hU , any one h Dl and

h Du with C1, diagonal matrices K p = diag{k+
1 , . . . , k+

n } and
Km = diag{k−

1 , . . . , k−
n }, (6) is asymptotically stable for 0 ≤

h(t) ≤ hU and h Dl ≤ ḣ(t) ≤ h Du < 1 if there exist positive
diagonal matrices �i = diag{λ1i , . . . , λni } (i = 1, 2, 3), �i =
diag{δ1i , . . . , δni } (i = 1, 2, 3), Hi = diag{h1i , . . . , hni } (i =
1, 2, 3), positive definite matrices R ∈ R

5n×5n , N ∈ R
3n×3n ,

Q1 ∈ R
3n×3n , Q2 ∈ R

3n×3n , G ∈ R
3n×3n , Qi (i = 3, 4, 5) ∈

R
n×n , and any matrix S ∈ R

3n×3n and symmetric matrices
Pi ∈ R

n×n (i = 1, 2), satisfying the following linear matrix
inequalities (LMIs):

(
�⊥)T (

�1[∇k
d ] + �

)(
�⊥)

< 0 (16)
[G S

� G
]

> 0 (17)
[

Q4 P1
� Q5

]
> 0,

[
Q4 P2
� Q5

]
> 0 ∀k = 1, 2 (18)

where �1[∇k
d ] and � are defined in (15), and �⊥ is the right

orthogonal complement of �.
Proof: For positive diagonal matrices �i ,�i (i =

1, 2, 3) and positive definite matrices R, N , Q1, Q2, G, and
Qi (i = 3, 4, 5), let us take the LK functional candidate

V =
7∑

i=1

Vi (19)

where

V1 = αT (t)Rα(t)

V2 =
∫ t

t−hU

βT (s)Nβ(s)ds

V3 = 2
n∑

i=1

(
λ1i

∫ xi (t)

0
( fi (s) − k−

i s)ds

+δ1i

∫ xi (t)

0
(k+

i s − fi (s))ds

)

+2
n∑

i=1

(
λ2i

∫ xi (t−h(t))

0
( fi (s) − k−

i s)ds

+δ2i

∫ xi (t−h(t))

0
(k+

i s − fi (s))ds

)

+2
n∑

i=1

(
λ3i

∫ xi (t−hU )

0
( fi (s) − k−

i s)ds

+δ3i

∫ xi (t−hU )

0
(k+

i s − fi (s))ds

)

V4 =
∫ t

t−h(t)
βT (s)Q1β(s)ds +

∫ t−h(t)

t−hU

βT (s)Q2β(s)ds

V5 = hU

∫ t

t−hU

∫ t

s
βT (u)Gβ(u)duds

V6 = (h2
U /2)

∫ t

t−hU

∫ t

s

∫ t

u
ẋ T (v)Q3 ẋ(v)dvduds

V7 =
∫ t

t−hU

∫ t

s
x T (u)Q4x(u)duds

+
∫ t

t−hU

∫ t

s
ẋ T (u)Q5 ẋ(u)duds. (20)

By the time derivative of V1, it can be given as

V̇1 = 2αT (t)Rα̇(t)

= 2

⎡
⎢⎢⎢⎢⎢⎣

x(t)
x(t − hU )∫ t

t−h(t) x(s)ds + ∫ t−h(t)
t−hU

x(s)ds∫ t
t−h(t) f (x(s))ds + ∫ t−h(t)

t−hU
f (x(s))ds

x(t − h(t))

⎤
⎥⎥⎥⎥⎥⎦

T

×R

⎡
⎢⎢⎢⎢⎣

ẋ(t)
ẋ(t − hU )

x(t) − x(t − hU )
f (x(t)) − f (x(t − hU ))

(1 − ḣ(t))ẋ(t − h(t))

⎤
⎥⎥⎥⎥⎦

= ζ T (t)
(
	1Rϒ1[ḣ(t)]	

T
2 + 	2ϒ

T
1[ḣ(t)]R	T

1

)
ζ(t) (21)

where

ϒ1[ḣ(t)] = diag
{

I, I, I, I, (1 − ḣ(t))I
}
. (22)

Also, we have

V̇2 = βT (t)Nβ(t) − βT (t − hU )TNβT (t − hU )

= ζ T (t)
[
	3N	T

3 − 	4N	T
4

]
ζ(t). (23)

Calculation of V̇3 gives

V̇3 = 2 [ f (x(t)) − Km x(t)]T �1 ẋ(t)

+2
[
K px(t) − f (x(t))

]T
�1ẋ(t)

+(1 − ḣ(t))
{

2 [ f (x(t − h(t))) − Km x(t − h(t))]T

×�2 ẋ(t − h(t))

+2
[
K px(t − h(t)) − f (x(t − h(t)))

]T

×�2 ẋ(t − h(t))}
+2 [ f (x(t − hU )) − Km x(t − hU )]T �3 ẋ(t − hU )

+2
[
K px(t − hU ) − f (x(t − hU ))

]T
�3 ẋ(t − hU )

= ζ T (t)
(
�1 + �2[ḣ(t)]

)
ζ(t) (24)

where �1 was defined in (15) and

�2[ḣ(t)] = (1 − ḣ(t))
{

[e9 − e2 Km ] �2eT
13

+e13�2 [e9 − e2 Km ]T

+ [
e2 K p − e9

]
�2eT

13

+e13�2
[
e2 K p − e9

]T
}
. (25)
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Calculation of V̇4 leads to

V̇4 = βT (t)Q1β(t)

−(1 − ḣ(t))βT (t − h(t))Q1β(t − h(t))

+(1 − ḣ(t))βT (t − h(t))Q2β(t − h(t))

−βT (t − hU )Q2β(t − hU )

= ζ T (t)
[
	3Q1	

T
3 + (1 − ḣ(t))	5(−Q1 + Q2)	

T
5

−	4Q2	
T
4

]
ζ(t). (26)

By use of Lemma 1 introduced in Section II and Theorem 1
in [33], if (17) holds, then an estimation of V̇5 can be obtained
as

V̇5 = h2
U βT (t)Gβ(t) − hU

∫ t

t−h(t)
βT (s)Gβ(s)ds

−hU

∫ t−h(t)

t−hU

βT (s)Gβ(s)ds

≤ h2
U βT (t)Gβ(t) −

(
hU

h(t)

)(∫ t

t−h(t)
β(s)ds

)T

G

×
(∫ t

t−h(t)
β(s)ds

)
−

(
hU

hU − h(t)

)

×
(∫ t−h(t)

t−hU

β(s)ds

)T

G ×
(∫ t−h(t)

t−hU

β(s)ds

)

≤ h2
U βT (t)Gβ(t) −

[ ∫ t
t−h(t) β(s)ds∫ t−h(t)
t−hU

β(s)ds

]T [
G S
� G

]

×
[ ∫ t

t−h(t) β(s)ds∫ t−h(t)
t−hU

β(s)ds

]

= ζ T (t)

{
h2

U 	3G	T
3 − 	6

[
G S
� G

]
	T

6

}
ζ(t). (27)

For the detailed proof of (27), see [39].
By Lemma 1, V̇6 is bounded as

V̇6 = (h2
U /2)2ẋ T (t)Q3 ẋ(t)

−(h2
U /2)

∫ t

t−hU

∫ t

s
ẋ T (u)Q3 ẋ(u)duds

≤ (h2
U /2)2ẋ T (t)Q3 ẋ(t) −

(∫ t

t−hU

∫ t

s
ẋ(u)duds

)T

×Q3

(∫ t

t−hU

∫ t

s
ẋ(u)duds

)

= (h2
U /2)2ẋ T (t)Q3 ẋ(t)

−
(

hU x(t) −
∫ t

t−hU

x(s)ds

)T

×Q3

(
hU x(t) −

∫ t

t−hU

x(s)ds

)

= (h2
U /2)2ẋ T (t)Q3 ẋ(t)

−
(

hU x(t) −
∫ t

t−h(t)
x(s)ds −

∫ t−h(t)

t−hU

x(s)ds

)T

×Q3

(
hU x(t) −

∫ t

t−h(t)
x(s)ds −

∫ t−h(t)

t−hU

x(s)ds

)

= ζ T (t)ζ(t). (28)

Finally, V̇7 is easily obtained as

V̇7 = hU x T (t)Q4x(t) −
∫ t

t−hU

x T (s)Q4x(s)ds

+hU ẋ T (t)Q5 ẋ(t) −
∫ t

t−hU

ẋ T (s)Q5 ẋ(s)ds. (29)

Inspired by the work of [34], the following two zero equalities
with any symmetric matrices P1 and P2 are considered:

0 = xT (t)P1x(t) − x T (t − h(t))P1x(t − h(t))

−2
∫ t

t−h(t)
x T (s)P1 ẋ(s)ds

0 = xT (t − h(t))P2x(t − h(t)) − xT (t − hU )P2x(t − hU )

−2
∫ t−h(t)

t−hU

x T (s)P2 ẋ(s)ds. (30)

With the zero equalities, an upper bound of V̇7 is

V̇7 ≤ ζ T (t)�ζ(t)

−
∫ t

t−h(t)

[
x(s)
ẋ(s)

]T [
Q4 P1
� Q5

] [
x(s)
ẋ(s)

]
ds

−
∫ t−h(t)

t−hU

[
x(s)
ẋ(s)

]T [
Q4 P2
� Q5

] [
x(s)
ẋ(s)

]
ds.

(31)

If (18) hold, then

V̇7 ≤ ζ T (t)�ζ(t). (32)

From (8), for any positive diagonal matrices Hi =
diag{h1i , . . . , hni } (i = 1, 2, 3), the following inequality
holds:

0 ≤ −2
n∑

i=1

hi1
[

fi (xi (t)) − k−
i xi (t)

]

× [
fi (xi (t)) − k+

i xi (t)
]

−2
n∑

i=1

hi2
[

fi (xi (t − h(t))) − k−
i xi(t − h(t))

]

× [
fi (xi (t − h(t))) − k+

i xi (t − h(t))
]

−2
n∑

i=1

hi3
[

fi (xi (t − hU )) − k−
i xi (t − hU )

]

× [
fi (xi (t − hU )) − k+

i xi (t − hU )
]

= ζ T (t)�ζ(t). (33)

From (19)–(33) and by application of the S-procedure [37], if
(18) holds, then an upper bound of V̇ is

V̇ ≤ ζ T (t)
(
�1[ḣ(t)] + �

)
ζ(t) (34)

where

�1[ḣ(t)] = 	1Rϒ1[ḣ(t)]	
T
2 + 	2ϒ

T
1[ḣ(t)]R	T

1 + 	3N	T
3

−	4N	T
4 + �1 + �2[ḣ(t)] + 	3Q1	

T
3

+(1 − ḣ(t))	5(−Q1 + Q2)	
T
5 − 	4G2	

T
4

+h2
U 	3G	T

3 − 	6

[G S
� G

]
	T

6 +  + �. (35)
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It should be noted that �1[ḣ(t)] is affinely dependent on ḣ(t).
By Lemma 2, ζ T (t)(�1[ḣ(t)] + �)ζ(t) < 0 with 0 = �ζ(t) is
equivalent to (�⊥)T (�1[ḣ(t)] + �)�⊥ < 0. Thus, if (16) for
k = 1, 2, (17), and (18) hold, then (6) is asymptotically stable
for 0 ≤ h(t) ≤ hU and h Dl ≤ ḣ(t) ≤ h Du . This completes
our proof. �

Remark 2: Recently, the reciprocally convex optimization
technique to reduce the conservatism of stability criteria
for systems with time-varying delays was proposed in [33].
Motivated by this paper, the proposed method of [33] was
utilized in (27). In Theorem 1, an augmented vector ζ(t)
including the integral terms

∫ t
t−h(t) x(s)ds,

∫ t−h(t)
t−hU

x(s)ds,∫ t
t−h(t) f (x(s))ds,

∫ t−h(t)
t−hU

f (x(s))ds was used, which is dif-
ferent from those in the literature. Also, by taking the states
x(t − h(t)) and x(t − hU ) as interval of integral terms as
shown in the second and third terms of V3, more information
on the cross terms in ( f (x(t −h(t))), x(t −h(t)), ẋ(t −h(t)))
and ( f (x(t − hU )), x(t − hU ), ẋ(t − hU )) were utilized,
which has not been proposed yet. Furthermore, the term∫ t−h(t)

t−hU
βT (s)Q2β(s)ds are chosen as LK functional for the

first time when h Dl ≤ ḣ(t) ≤ h Du . These three considerations
are main differences in the construction of the LK functional
candidate.

Remark 3: Based on the condition (8) and by S-procedure,
most of the previous papers were utilized (33) in deriving
the asymptotic stability criteria until now. As mentioned in
the introduction, all works in [22]–[27] had chosen the delay-
partitioning number as two as a tradeoff between computa-
tional burden and enhancement of feasible region in stability
criteria. That is, the condition 0 ≤ h(t) ≤ hU is divided
into 0 ≤ h(t) ≤ hU /2 and hU /2 ≤ h(t) ≤ hU . It should
be noted that when the number of delay-partitioning number
increases, the matrix formulation becomes more complex and
the dimension of stability condition grows bigger because the
dimension of an augmented vector increases. In this paper,
inspired by the fact that the ability and performance are related
to the choice of activation functions [31], the bounding of
activation function k−

i ≤ ( fi (u)/u) ≤ k+
i is divided into

two subintervals such as k−
i ≤ ( fi (u)/u) ≤ (k−

i + k+
i )/2

and (k−
i + k+

i )/2 ≤ ( fi (u)/u) ≤ k+ instead of using the
delay-partitioning approach. This result will be introduced in
Theorem 2. Through three numerical examples, it will be
shown Theorem 2 significantly improves the feasible region
of stability criterion comparing with those of Theorem 1.

Next, based on the results of Theorem 1, a novel approach
for delay-dependent stability criterion for (6) is introduced. For
the sake of simplicity in matrix representation, the notations
for some matrices of Theorem 2 are defined as

�a = −
[

e8 − e1

(
Km + K p

2

)]
H1 [e8 − e1Km ]T

− [e8 − e1Km ] H1

[
e8 − e1

(
Km + K p

2

)]T

−
[

e9 − e2

(
Km + K p

2

)]
H2 [e9 − e2Km ]T

− [e9 − e2Km ] H2

[
e9 − e2

(
Km + K p

2

)]T

−
[

e10 − e3

(
Km + K p

2

)]
H3 [e10 − e3Km ]T

− [e10 − e3 Km] H3

[
e10 − e3

(
Km + K p

2

)]T

�b = − [
e8 − e1 K p

]
H4

[
e8 − e1

(
Km + K p

2

)]T

−
[

e8 − e1

(
Km + K p

2

)]
H4

[
e8 − e1K p

]T

− [
e9 − e2 K p

]
H5

[
e9 − e2

(
Km + K p

2

)]T

−
[

e9 − e2

(
Km + K p

2

)]
H5

[
e9 − e2 K p

]T

− [
e10 − e3 K p

]
H6

[
e10 − e3

(
Km + K p

2

)]T

−
[

e10 − e2

(
Km + K p

2

)]
H6

[
e10 − e3K p

]T
. (36)

Now, the following theorem is the second main result.
Theorem 2: For a given positive scalar hU , any one h Dl and

h Du with C1, diagonal matrices K p = diag{k+
1 , . . . , k+

n } and
Km = diag{k−

1 , . . . , k−
n }, (6) is asymptotically stable for 0 ≤

h(t) ≤ hU and h Dl ≤ ḣ(t) ≤ h Du < 1 if there exist positive
diagonal matrices �i = diag{λ1i , . . . , λni } (i = 1, 2, 3), �i =
diag{δ1i , . . . , δni } (i = 1, 2, 3), Hi = diag{h1i , . . . , hni } (i =
1, . . . , 6), positive definite matrices R ∈ R

5n×5n , N ∈
R

3n×3n , Q1 ∈ R
3n×3n , Q2 ∈ R

3n×3n , G ∈ R
3n×3n , Qi (i =

3, 4, 5) ∈ R
n×n , and any matrix S ∈ R

3n×3n and symmetric
matrices Pi ∈ R

n×n (i = 1, 2), satisfying the following LMIs:
(
�⊥)T (

�1[∇k
d ] + �a

) (
�⊥)

< 0 (37)
(
�⊥)T (

�1[∇k
d ] + �b

) (
�⊥)

< 0 (38)
[G S

� G
]

> 0 (39)
[

Q4 P1
� Q5

]
> 0,

[
Q4 P2
� Q5

]
> 0 ∀k = 1, 2 (40)

where �1[∇k
d ], and � are defined in (15), �a and �b are in

(36), and �⊥ is the right orthogonal complement of �.
Proof: For positive diagonal matrices �i , �i (i = 1, 2, 3)

and positive definite matrices R, N , G, Q1, Q2, Qi (i =
3, 4, 5), let us consider the same LK functional (62) proposed
in Theorem 1.

Case 1:

k−
i ≤ ( fi (u) − fi (v)/u − v) ≤ (k−

i + k+
i )/2.

Let us choose v = 0. It should be noted that the condition
k−

i ≤ ( fi (u)/u) ≤ (k−
i + k+

i )/2 is equivalent to

[
fi (u) − k−

i u
] [

fi (u) − ((k−
i + k+

i )/2)u
]

< 0,

i = 1, . . . , n. (41)

From (41), for any positive diagonal matrices H1 = diag
{h11, . . . , h1n}, H2 = diag{h21, . . . , h2n}, and H3 = diag
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{h31, . . . , h3n}, the following inequality holds:

0 ≤ −2
n∑

i=1

h1i
[

fi (xi (t)) − k−
i xi(t)

]

×
[

fi (xi (t)) −
(

k−
i + k+

i

2

)
xi (t)

]

−2
n∑

i=1

h2i
[

fi (xi (t − h(t))) − k−
i xi (t − h(t))

]

×
[

fi (xi (t − h(t))) −
(

k−
i + k+

i

2

)
xi(t − h(t))

]

−2
n∑

i=1

h3i
[

fi (xi (t − hU )) − k−
i xi (t − hU )

]

×
[

fi (xi (t − hU )) −
(

k−
i + k+

i

2

)
xi (t − hU )

]

= ζ T (t)�aζ(t). (42)

Then, from the proof of Theorem 1, when k−
i ≤ ( fi (u)/u) ≤

(k−
i + k+

i )/2, an upper bound of V̇ can be

V̇ ≤ ζ T (t)
{
�1[ḣ(t)] + �a

}
ζ(t) (43)

with 0 = �ζ(t). Therefore, from Lemma 2 and S-procedure
[37], if (37), (39), and (40) hold, then (6) is asymptotically
stable for 0 ≤ h(t) ≤ hU , h Dl ≤ ḣ(t) ≤ h Du < 1, and
k−

i ≤ ( fi (u)/u) ≤ (k−
i + k+

i )/2.
Case 2:

(k−
i + k+

i )/2 ≤ ( fi (u) − fi (v)/u − v) ≤ k+
i .

Let us choose v = 0. It should be noted that the condition
(k−

i + k+
i )/2 ≤ ( fi (u)/u) ≤ k+

i is equivalent to
[

fi (u) −
(

k−
i + k+

i

2

)
u

]
[

fi (u) − k+
i u

]
< 0,

i = 1, . . . , n. (44)

From (44), for any positive diagonal matrices H4 =
diag{h41, . . . , h4n}, H5 = diag{h51, . . . , h5n}, and H6 =
diag{h61, . . . , h6n}, the following inequality holds:

0 ≤ ζ T (t)�bζ(t). (45)

Then, from the proof of Theorem 1, when (k−
i + k+

i )/2 ≤
( fi (u)/u) ≤ k+

i , an upper bound of V̇ can be

V̇ ≤ ζ T (t)
{
�1[ḣ(t)] + �b

}
ζ(t) (46)

with 0 = �ζ(t).
Therefore, from Lemma 2 and S-procedure [37], if (38)–

(40) hold, then (6) is asymptotically stable for 0 ≤ h(t) ≤ hU ,
h Dl ≤ ḣ(t) ≤ h Du < 1, and (k−

i + k+
i )/2 ≤ ( fi (u)/u) ≤ k+

i .
Thus, the feasibility of (37)–(40) means that (6) is asymptot-
ically stable for 0 ≤ h(t) ≤ hU , h Dl ≤ ḣ(t) ≤ h Du < 1,
and k−

i ≤ ( fi (u)/u) ≤ k+
i . This completes the proof of

Theorem 2. �
Remark 4: As mentioned in [15], the activation func-

tions of the transformed system (6) also satisfy the

condition (7). In Theorem 3, by choosing (u, v) in (7) as (x(t),
x(t − h(t))), and (x(t − h(t)), x(t − hU )) at each subintervals
k−

i ≤ ( fi (u)/u) ≤ (k−
i + k+

i )/2 and (k−
i + k+

i )/2 ≤
( fi (u)/u) ≤ k+, respectively, more information on cross
terms among the states f (x(t)), f (x(t − h(t))), f (x(t −
hU )), x(t), x(t − h(t)), and x(t − hU ) will be utilized, which
may lead to less conservative stability criteria. This idea has
not been considered earlier in the literature. Through three
numerical examples utilized in the literature, it will be shown
that the newly proposed activation condition significantly
enhances the feasible region of stability criterion by com-
paring maximum delay bounds with the results obtained by
Theorem 2.

The following matrix notations will be used in Theorem 3
for the sake of simplicity:

�a = − [e8 − e9 − (e1 − e2)Km] H7

×
[

e8 − e9 − (e1 − e2)

(
Km + K p

2

)]T

−
[

e8 − e9 − (e1 − e2)

(
Km + K p

2

)]
H7

× [e8 − e9 − (e1 − e2)Km]T

− [e9 − e10 − (e2 − e3)Km ] H8 ×
[

e9 − e10 − (e2 − e3)

(
Km + K p

2

)]T

−
[

e9 − e10 − (e2 − e3)

(
Km + K p

2

)]
H8

× [e9 − e10 − (e2 − e3)Km]T

�b = −
[

e8 − e9 − (e1 − e2)

(
Km + K p

2

)]
H9

× [
e8 − e9 − (e1 − e2)K p

]T

− [
e8 − e9 − (e1 − e2)K p

]
H9 ×

[
e8 − e9 − (e1 − e2)

(
Km + K p

2

)]T

−
[

e9 − e10 − (e2 − e3)

(
Km + K p

2

)]
H10

× [
e9 − e10 − (e2 − e3)K p

]T

− [
e9 − e10 − (e2 − e3)K p

]
H10

×
[

e9 − e10 − (e2 − e3)

(
Km + K p

2

)]T

. (47)

Now, the following theorem is the final main result.
Theorem 3: For a given positive scalar hU , any ones h Dl and

h Du with C1, diagonal matrices K p = diag{k+
1 , . . . , k+

n } and
Km = diag{k−

1 , . . . , k−
n }, (6) is asymptotically stable for 0 ≤

h(t) ≤ hU and h Dl ≤ ḣ(t) ≤ h Du < 1 if there exist positive
diagonal matrices �i = diag{λ1i , . . . , λni } (i = 1, 2, 3), �i =
diag{δ1i , . . . , δni } (i = 1, 2, 3), Hi = diag{h1i , . . . , hni }(i =
1, . . . , 10), positive definite matrices R ∈ R

5n×5n , N ∈
R

3n×3n , Q1 ∈ R
3n×3n , Q2 ∈ R

3n×3n , G ∈ R
3n×3n , Qi (i =

3, 4, 5) ∈ R
n×n , and any matrix S ∈ R

3n×3n and symmetric
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matrices Pi ∈ R
n×n (i = 1, 2), satisfying the following LMIs:

(
�⊥)T (

�1[∇k
d ] + �a + �a

) (
�⊥)

< 0 (48)
(
�⊥)T (

�1[∇k
d ] + �b + �b

) (
�⊥)

< 0 (49)
[G S

� G
]

> 0 (50)
[

Q4 P1
� Q5

]
> 0,

[
Q4 P2
� Q5

]
> 0 ∀k = 1, 2 (51)

where �1[∇k
d ], and � are defined in (15), �a and �b are in

(36), �a and �b are in (47), and �⊥ is the right orthogonal
complement of �.

Proof:
Case 1:

k−
i ≤ ( fi (u) − fi (v)/u − v) ≤ (k−

i + k+
i )/2.

For Case 1, the following conditions hold:
k−

i ≤ fi (xi (t)) − fi (xi (t − h(t)))

xi (t) − xi (t − h(t))
≤ (k−

i + k+
i )/2

k−
i ≤ fi (xi (t − h(t))) − f j (xi (t − hU ))

xi (t − h(t)) − xi (t − hU )
≤ (k−

i + k+
i )/2

i = 1, . . . , n. (52)

For i = 1, . . . , n, the above two conditions are equivalent to
[

fi (xi (t)) − fi (xi (t − h(t)) − k−
i (xi (t) − xi (t − h(t)))

]

×[
fi (xi (t)) − fi (xi (t − h(t))) −

(
k−

i + k+
i

2

)

× (xi (t) − xi (t − h(t)))
] ≤ 0 (53)[

fi (xi (t − h(t))) − fi (xi (t − hU ))

−k−
i (xi (t − h(t)) − xi (t − hU ))

]

× [ fi (xi (t − h(t))) − fi (xi (t − hU )) −
(

k−
i + k+

i

2

)

× (xi (t − h(t)) − xi (t − hU ))] ≤ 0. (54)

Therefore, for any positive diagonal matrices H7 = diag
{h7i , . . . , h7n}, and H8 = diag{h8i , . . . , h8n}, the following
inequality is satisfied:

0 ≤ −2
n∑

i=1

{
h7i [ fi (xi(t)) − fi (xi (t − h(t)))

−k−
i (xi (t) − xi (t − h(t)))]

× [ fi (xi (t)) − fi (xi (t − h(t)))

−
(

k−
i + k+

i

2

)
(xi (t) − xi (t − h(t)))]

}

−2
n∑

i=1

{
h8i [ fi (xi(t − h(t))) − fi (xi (t − hU ))

−k−
i (xi (t − h(t)) − xi (t − hU ))]

×[ fi (xi (t − h(t))) − fi (xi (t − hU ))

−
(

k−
i + k+

i

2

)
(xi (t − h(t)) − xi (t − hU ))]

}

= ζ T (t)�aζ(t). (55)

By considering (55) in Case I of Theorem 2, (48) can be
obtained.

Case 2:

(k−
i + k+

i )/2 ≤ ( fi (u) − fi (v)/u − v) ≤ k+
i .

For this case, using the similar method introduced in case 1
of Theorem 3, it can be easily checked that

0 ≤ ζ T (t)�bζ(t) (56)

holds. Thus, by considering (56) in case 2 of Theorem 2, (49)
can be obtained. This completes our proof. �

Remark 5: When ḣ(t) ≤ h D , the state ẋ(t −h(t)) cannot be
utilized as augmented vector ζ(t) by the methods presented
in the proofs of Theorems 1–3. Thus, V1 utilized in Theorems
1–3 should be modified. Also, the second term of proposed
LK functional V3 cannot be utilized since the term �2[ḣ(t)]
cannot be estimated with the constraint ḣ(t) ≤ h D . With
these considerations and based on the result of Theorem 3,
the corresponding stability criterion for C2 will be introduced
as Corollary 1.

In Corollary 1, block entry matrices ẽi (t) ∈ R
12n×n will be

used and the following notations are defined for the sake of
simplicity of matrix notation:

ζ̃ T (t) =
[

x T (t) x T (t − h(t)) x T (t − hU ) ẋ T (t)

× ẋ T (t − hU )

∫ t

t−h(t)
x T (s)ds

×
∫ t−h(t)

t−hU

x T (s)ds f T (x(t)) f T (x(t − h(t)))

× f T (x(t − hU ))

∫ t

t−h(t)
f T (x(s))ds

×
∫ t−h(t)

t−hU

f T (x(s))ds

]

�̃ = [−A 0 0 −I 0 0 0 W0 W1 0 0 0
]

α̃T (t) =
[

xT (t) x T (t−hU )
∫ t

t−hU
x T (s)ds

∫ t
t−hU

f T (x(s))ds

	̃1 = [
ẽ1 ẽ3 ẽ6 + ẽ7 ẽ11 + ẽ12

]

	̃2 = [
ẽ4 ẽ5 ẽ1 − ẽ3 ẽ8 − ẽ10

]

	̃3 = [
ẽ1 ẽ4 ẽ8

]
, 	̃4 = [

ẽ3 ẽ5 ẽ10
]

	̃6 = [
ẽ6 ẽ1 − ẽ2 ẽ11 ẽ7 ẽ2 − ẽ3 ẽ12

]

	̃a = [
ẽ1 ẽ2

]
, 	̃b = [

ẽ2 ẽ9
]

�̃1 = [̃e8 − ẽ1Km ] �1ẽT
4 + ẽ4�1 [̃e8 − ẽ1Km ]T

+ [̃
e1 K p − ẽ8

]
�1ẽT

4 + ẽ4�1
[̃
e1K p − ẽ8

]T

+ [̃e10 − ẽ3 Km] �3ẽT
5 + ẽ5�3 [̃e10 − ẽ3Km ]T

+ [̃
e3 K p − ẽ10

]
�3ẽT

5 + ẽ5�3
[̃
e3K p − ẽ10

]T

̃ = (h2
U /2)2ẽ4 Q3ẽT

4

−(hU ẽ1 − ẽ6 − ẽ7)Q3(hU ẽ1 − ẽ6 − ẽ7)
T

�̃ = hU ẽ1 Q4ẽT
1 + hU ẽ4 Q5ẽT

4 + ẽ1 P1ẽT
1

+ẽ2(−P1 + P2)̃e
T
2 − ẽ3 P2ẽT

3

�̃ = 	̃aQ1	̃
T
a − (1 − h Du)	̃bQ1	̃

T
b
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�2 = 	̃1R	̃T
2 + 	̃2R	̃T

1 + 	̃3N 	̃T
3 − 	̃4N 	̃T

4 + �̃1

+h2
U 	̃3G	̃T

3 − 	̃6

[G S
� G

]
	T

6 + ̃ + �̃. (57)

Corollary 1: For a given positive scalar hU and h Du
with C2, diagonal matrices K p = diag{k+

1 , . . . , k+
n }, and

Km = diag{k−
1 , . . . , k−

n }, (6) is asymptotically stable for
0 ≤ h(t) ≤ hU and ḣ(t) ≤ hU if there exist positive
diagonal matrices �i = diag{λ1i , . . . , λni } (i = 1, 3), �i =
diag{δ1i , . . . , δni } (i = 1, 3), Hi = diag{h1i , . . . , hni } (i =
1, . . . , 10), positive definite matrices R ∈ R

5n×5n , N ∈
R

3n×3n , G ∈ R
3n×3n , Q1 ∈ R

2n×2n Qi (i = 3, 4, 5) ∈ R
n×n ,

and any matrix S ∈ R
3n×3n and symmetric matrices Pi ∈

R
n×n (i = 1, 2), satisfying the following LMIs:

(
�̃⊥)T (

�2 + �̃a + �̃a + �̃) (
�̃⊥)

< 0 (58)
(
�̃⊥)T (

�2 + �̃b + �̃b + �̃) (
�̃⊥)

< 0 (59)
[G S

� G
]

> 0 (60)
[

Q4 P1
� Q5

]
> 0,

[
Q4 P2
� Q5

]
> 0 (61)

where �2, �̃, are defined in (57), �̃⊥ is the right orthogonal
complement of �̃, and �̃a , �̃b, �̃a , and �̃b have the same
notations defined in (36) and (47) with the block entry matrices
ẽi (t) ∈ R

12n×n (i = 1, . . . , 12).
Proof: For positive diagonal matrices �i ,�i (i = 1, 3)

and positive definite matrices R, N ,G, and Qi (i = 3, 4, 5),
let us take the LK functional candidate

V =
7∑

i=1

Vi (62)

where

V1 = α̃T (t)Rα̃(t)

V2 =
∫ t

t−hU

βT (s)Nβ(s)ds

V3 = 2
n∑

i=1

(
λ1i

∫ xi (t)

0
( fi (s) − k−

i s)ds

+δ1i

∫ xi (t)

0
(k+

i s − fi (s))ds

)

+2
n∑

i=1

(
λ3i

∫ xi (t−hU )

0
( fi (s) − k−

i s)ds

+δ3i

∫ xi (t−hU )

0
(k+

i s − fi (s))ds

)

V4 =
∫ t

t−h(t)

[
x(s)

f (x(s))

]T

Q1

[
x(s)

f (x(s))

]
ds

V5 = hU

∫ t

t−hU

∫ t

s
βT (u)Gβ(u)duds

V6 = (h2
U /2)

∫ t

t−hU

∫ t

s

∫ t

u
ẋ T (v)Q3 ẋ(v)dvduds

V7 =
∫ t

t−hU

∫ t

s
x T (u)Q4x(u)duds

TABLE I

DELAY BOUNDS hU WITH DIFFERENT h D (EXAMPLE 1)

h DMethod Condition of ḣ(t)
0.4 0.45 0.5 0.55

[24] (m = 2) 0 ≤ ḣ(t) ≤ h D 4.39 3.67 3.46 3.41

Theorem 2 [20] −h D ≤ ḣ(t) ≤ h D 4.8401 4.0626 3.8083 3.7064

[25] (m = 2) 0 ≤ ḣ(t) ≤ h D 5.2420 4.4301 4.1055 3.9231

Theorem 1 −h D ≤ ḣ(t) ≤ h D 5.0588 4.2603 4.0604 4.0185

Theorem 2 −h D ≤ ḣ(t) ≤ h D 5.3079 4.5267 4.2924 4.1903

Theorem 3 −h D ≤ ḣ(t) ≤ h D 9.7094 7.7523 6.8570 6.2977

Corollary 1 ḣ(t) ≤ h D 4.8748 4.2702 4.0551 3.9369
∗ m is delay-partitioning number

+
∫ t

t−hU

∫ t

s
ẋ T (u)Q5 ẋ(u)duds (63)

and α̃(t) are defined in (57) and β(t) are in (15).
With the augmented vector ζ̃ (t) defined in (57) and based

on the proof of Theorem 3, one can easily check that (58)–(61)
guarantee the asymptotic stability for (6). �

Finally, based on the result of Corollary 1, when information
about the upper bound of ḣ(t) is unknown, the corresponding
stability criterion will be described as Corollary 2 by choosing
Q1 = 0.

Corollary 2: For a given positive scalar hU with C3,
diagonal matrices K p = diag{k+

1 , . . . , k+
n }, and Km =

diag{k−
1 , . . . , k−

n }, (6) is asymptotically stable for 0 ≤
h(t) ≤ hU if there exist positive diagonal matrices �i =
diag{λ1i , . . . , λni } (i = 1, 3), �i = diag{δ1i , . . . , δni } (i =
1, 3), Hi = diag{h1i , . . . , hni } (i = 1, . . . , 10), positive
definite matrices R ∈ R

5n×5n , N ∈ R
3n×3n , G ∈ R

3n×3n ,
Qi (i = 3, 4, 5) ∈ R

n×n , and any matrix S ∈ R
3n×3n and

symmetric matrices Pi ∈ R
n×n (i = 1, 2), satisfying the

following LMIs:
(
�̃⊥)T (

�2 + �̃a + �̃a
) (

�̃⊥)
< 0 (64)

(
�̃⊥)T (

�2 + �̃b + �̃b
) (

�̃⊥)
< 0 (65)

[G S
� G

]
> 0 (66)

[
Q4 P1
� Q5

]
> 0,

[
Q4 P2
� Q5

]
> 0 (67)

where all the notations of (64)–(67) are the same as in
Corollary 1.

IV. NUMERICAL EXAMPLES

In this section, three numerical examples will be used to
check the feasibility and improvement of the stability criteria.

Example 1: Consider the neural networks (6) with the
parameters

A =
[

1.5 0
0 0.7

]
, W0 =

[
0.0503 0.0454
0.0987 0.2075

]

W1 =
[

0.2381 0.9320
0.0388 0.5062

]

K p = diag{0.3, 0.8}, Km = diag{0, 0}. (68)

With the condition −h D ≤ ḣ(t) ≤ h D , our results obtained
by Theorems 1–3 to the above system are shown in Table I.
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TABLE II

DELAY BOUNDS hU WITH DIFFERENT h D (EXAMPLE 2)

h DMethod Condition of ḣ(t)
0.8 0.9 unknown or ≥ 1

Theorem 2 [28] (ρ = 0.8) 0 ≤ ḣ(t) ≤ h D 2.5406 1.7273 1.5161
Theorem 1 [22] (m = 2) ḣ(t) ≤ h D 2.8654 1.9508 –
Corollary 1 [22] (m = 2) – – – 1.7809
Theorem 1 [23] (m = 2) ḣ(t) ≤ h D 2.8854 1.9631 –

Theorem 1 without V2 [23] (m = 2) – – – 1.7810
Theorem 1 [25] (m = 2) 0 ≤ ḣ(t) ≤ h D 3.0604 1.9956 –
Corollary 1 [25] (m = 2) – – – 1.7860
Theorem 1 [27] (m = 2) ḣ(t) ≤ h D 3.0640 2.0797 –
Corollary 1 [27] (m = 2) – – – 1.9207

Theorem 1 −h D ≤ ḣ(t) ≤ h D 5.4714 3.7440 –
Theorem 2 −h D ≤ ḣ(t) ≤ h D 6.5848 4.1767 –
Theorem 3 −h D ≤ ḣ(t) ≤ h D 7.5173 5.3993 –
Corollary 1 ḣ(t) ≤ h D 3.7236 2.9229 –
Corollary 2 – – – 2.9208

∗ m is delay-partitioning number

TABLE III

COMPARISON OF DELAY BOUNDS hU WITH THE RESULTS OF [29] FOR DIFFERENT h D (EXAMPLE 2)

h DMethod Condition of ḣ(t)
0.8 0.9 unknown

Theorem 1 [29] (m = 1) 0 ≤ ḣ(t) ≤ h D 3.6456 2.3361 –
Theorem 1 [29] (m = 1, P12 = P22 = 0, R = 0) − – – 1.4916

Theorem 1 [29] (m = 2) 0 ≤ ḣ(t) ≤ h D 4.6752 3.0208 –
Theorem 1 [29] (m = 2, P12 = P22 = 0, R = 0) − – – 1.7810

Theorem 1 [29] (m = 3) 0 ≤ ḣ(t) ≤ h D 5.3523 3.4668 –
Theorem 1 [29] (m = 3, P12 = P22 = 0, R = 0) − – – 1.9645

Theorem 1 [29] (m = 4) 0 ≤ ḣ(t) ≤ h D 5.7957 3.7639 –
Theorem 1 [29] (m = 4, P12 = P22 = 0, R = 0) − – – 2.0727

Theorem 1 [29] (m = 5) 0 ≤ ḣ(t) ≤ h D 6.1032 3.9696 –
Theorem 1 [29] (m = 5, P12 = P22 = 0, R = 0) − – – 2.1445

Theorem 1 0 ≤ ḣ(t) ≤ h D 5.9656 4.0364 –
Theorem 2 0 ≤ ḣ(t) ≤ h D 7.4425 4.6195 –
Theorem 3 0 ≤ ḣ(t) ≤ h D 8.6008 5.9978 –
Corollary 2 – – – 2.9208

∗ m is delay-partitioning number

TABLE IV

DELAY BOUNDS hU WITH DIFFERENT h D (EXAMPLE 3, CASE 1)

h DMethod Condition of ḣ(t)
0.1 0.5 0.9 unknown

Theorem 2 [28] (ρ = 0.6) 0 ≤ ḣ(t) ≤ h D 3.3574 2.5915 2.1306 2.0779
Proposition 2 [26] (m = 2) ḣ(t) ≤ h D 3.5546 2.6438 2.1349 –
Theorem 1 [23] (m = 2) ḣ(t) ≤ h D 3.7525 2.7353 2.2760 –

Theorem 1 without V2 [23] (m = 2) – – – – 2.1326
Theorem 1 [24] (m = 2) 0 ≤ ḣ(t) ≤ h D 3.91 2.79 2.33 –

Theorem 1 without Yi j [24] (m = 2) – – – – 2.2047
Theorem 2 [20] −h D ≤ ḣ(t) ≤ h D 3.7854 3.2229 2.6422 –
Corollary 1 [20] – – – – 2.1950

Theorem 1 −h D ≤ ḣ(t) ≤ h D 3.9269 3.4072 2.8337 –
Theorem 2 −h D ≤ ḣ(t) ≤ h D 3.9332 3.5277 3.2025 –
Theorem 3 −h D ≤ ḣ(t) ≤ h D 3.9337 3.5307 3.2627 –
Corollary 1 ḣ(t) ≤ h D 3.8102 3.1518 2.8402 –
Corollary 2 – – – – 2.8379

∗ m is delay-partitioning number

Also, when ḣ(t) ≤ h D , the corresponding results obtained
by Corollary 1 are also included in Table I. In the table,
the recent results of [20], [24], and [25] are compared with

ours. From Table I, it can be seen that Theorem 1 improves
the feasible region of stability criteria compared to those of
[20] and [24] but falls short compared to the results of [25].
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TABLE V

COMPARISON OF DELAY BOUNDS hU WITH THE RESULTS OF [29] FOR DIFFERENT h D (EXAMPLE 3, CASE 1)

h DMethod Condition of ḣ(t)
0 0.1 0.5 0.9 unknown

Theorem 1 [29] (m = 1) 0 ≤ ḣ(t) ≤ h D 3.9376 3.8682 3.5770 2.9124 −
Theorem 1 [29] (m = 1, P12 = P22 = 0, R = 0) − − − − − 2.0094

Theorem 1 [29] (m = 2) 0 ≤ ḣ(t) ≤ h D 4.5812 4.4288 4.0089 3.2900 −
Theorem 1 [29] (m = 2, P12 = P22 = 0, R = 0) − − − − − 1.7810

Theorem 1 [29] (m = 3) 0 ≤ ḣ(t) ≤ h D 4.6971 4.5328 4.0983 3.3724 −
Theorem 1 [29] (m = 3, P12 = P22 = 0, R = 0) − − − − − 2.2266

Theorem 1 [29] (m = 4) 0 ≤ ḣ(t) ≤ h D 4.7400 4.5724 4.1343 3.4066 −
Theorem 1 [29] (m = 4, P12 = P22 = 0, R = 0) − − − − − 2.2415

Theorem 1 [29] (m = 5) 0 ≤ ḣ(t) ≤ h D 4.7591 4.5906 4.1518 3.4186 −
Theorem 1 [29] (m = 5, P12 = P22 = 0, R = 0) − − − − − 2.2455

Theorem 1 0 ≤ ḣ(t) ≤ h D 4.1731 4.0551 3.9308 3.3228 −
Theorem 2 0 ≤ ḣ(t) ≤ h D 4.1840 4.1089 4.0384 3.7175 −
Theorem 3 0 ≤ ḣ(t) ≤ h D 4.1844 4.1135 4.0464 3.7768 −
Corollary 2 − − − − − 2.9208

∗ m is the delay-partitioning number

TABLE VI

DELAY BOUNDS hU WITH DIFFERENT h D (EXAMPLE 3, CASE 2)

h DMethod Condition of ḣ(t)
0 0.1 0.5 0.9 unknown

Theorem 1 [24] (m = 2) 0 ≤ ḣ(t) ≤ h D 1.9676 1.4673 infeasible infeasible −
Theorem 1 without Yi j [24] (m = 2) − − − − − infeasible

Theorem 2 [20] −h D ≤ ḣ(t) ≤ h D 2.8631 2.4707 infeasible infeasible −
Corollary 1 [20] − − − − − infeasible

Theorem 1 −h D ≤ ḣ(t) ≤ h D 2.9484 2.6305 0.6716 infeasible −
Theorem 2 −h D ≤ ḣ(t) ≤ h D 3.9862 3.7335 2.7973 1.5598 −
Theorem 3 −h D ≤ ḣ(t) ≤ h D 4.0229 3.7824 2.9955 2.1655 −
Corollary 1 ḣ(t) ≤ h D 3.7752 3.4784 2.6390 2.0649 −
Corollary 2 − − − − − 2.0609

∗ m is the delay-partitioning number

However, Theorem 2 successfully enhances the delay bounds
compared to the results mentioned in Table I. Also, the results
of Theorem 3 clearly provide lager delay bounds than those of
Theorem 2, which supports the effectiveness in reducing the
conservatism of the stability criterion.

Example 2: Consider the neural networks (6) with the
parameters

A =
[

2 0
0 2

]
, W0 =

[
1 1

−1 −1

]

W1 =
[

0.88 1
1 1

]
, K p = diag{0.4, 0.8},

Km = diag{0, 0}. (69)

For this system, by dividing the time-varying delay interval
into some subintervals, the maximum delay bounds for guar-
anteeing the asymptotic stability of the network were presented
in [28]. And by dividing delay interval into two and employing
different free-weighting matrices at each interval, improved
maximum delay bounds were obtained in [22], [23], [25], and
[27] when h D is 0.8, 0.9, and unknown. By application of The-
orems 1–3 and Corollaries 1 and 2, our obtained delay bounds
and the detailed comparisons with those [25] and [27] are
given in Table II. From Table II, Theorem 1 clearly shows less
conservatism compared to the results of [22], [23], [25], [27],

and [28] in spite of not utilizing the delay-partitioning tech-
nique. Furthermore, Theorems 2 and 3 and Corollaries 1 and 2
also verify the effectiveness in improvement of feasible region.
In Table III, when 0 ≤ ḣ(t) ≤ h D , another comparison of our
results with those of [29] which utilized delay-partitioning
approach is shown. Except the results of Theorem 1 when
h D = 0.8, all other results obtained by applying the proposed
methods give larger delay bounds than those of [29].

Example 3: Consider the neural networks (6) where

A =

⎡
⎢⎢⎣

1.2769 0 0 0
0 0.6231 0 0
0 0 0.9230 0
0 0 0 0.4480

⎤
⎥⎥⎦

W0 =

⎡
⎢⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9534 −0.5015

⎤
⎥⎥⎦

W1 =

⎡
⎢⎢⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤
⎥⎥⎦

K p = diag{0.1137, 0.1279, 0.7994, 0.2368}. (70)
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In Table IV, when Km = diag{0, 0, 0, 0} (Case 1), the
comparison results on the maximum delay bound allowed via
the methods in recent works [20], [23], [24], [26], [28] are
presented. From Table IV, it can be seen that Theorem 1
provides larger delay bounds than the existing ones. Also, the
obtained results of Theorems 2 and 3 show that the proposed
ideas in Theorems 2 and 3 significantly enhance the feasible
region of stability criterion compared to those of Theorem 1.
And the results of Corollaries 1 and 2 also enhance the feasible
region of stability condition compared to those of [23] when
ḣ(t) ≤ h D and h D is unknown, respectively. In Table V, when
0 ≤ ḣ(t) ≤ h D , another comparison of our results with those
of [29] which utilized delay-partitioning approach is shown.
For the case when h D is 0.9 and unknown, all the results
obtained by applying the proposed methods give larger delay
bounds than those of [29]. When h D is less than 0.5, the
results of Theorems 2 and 3 are larger than those of [29] with
the delay-partitioning number 2. When the delay-partitioning
number is larger than 2 in [29], the delay bounds of [29] with
h D = 0 and h D = 0.1 are larger than our results. It should
be noted that, based on the proposed methods, if the delay-
partitioning approach is used, then the corresponding delay
bounds become large, which will be a future research topic.
Lastly, when Km = diag{−0.4, −0.1, −0.2, −0.3}(Case 2),
some comparisons of maximum delay bounds are conducted in
Table VI, which shows that the proposed methods significantly
increase the feasible region of stability compared to those of
[20] and [24].

V. CONCLUSION

In this paper, some delay-dependent stability criteria for
neural networks with time-varying delays in which both the
upper and lower bounds of delay-derivative were presented. In
Theorem 1, by constructing the new augmented LK functional
and utilizing some recent results introduced in [33] and
[34], the sufficient condition for guaranteeing the asymptotic
stability of neural network having time-varying delays in (6)
was derived. Based on the results of Theorem 1, by proposing
the new idea of dividing the bounding of activation functions
into two, an improved stability criterion was proposed in The-
orem 2. Also, by constructing new inequalities of activation
functions, a further improved stability criterion was presented
in Theorem 3. When ḣ(t) ≤ h D and h D are unknown, the cor-
responding stability conditions were proposed in Corollaries
1 and 2, respectively. Via three numerical examples available
in the literature, the improvement of the proposed stability
criteria was successfully verified.
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