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Abstract

This paper is concerned with the stability and stabilization problems for discrete-time systems

with interval time-varying delays. By construction of an augmented Lyapunov–Krasovskii functional

and utilization of zero equalities, improved delay-dependent criteria for asymptotic stability of the

systems are derived in terms of linear matrix inequalities (LMIs). Based on the proposed stability

criteria, a sufficient condition for designing feedback gains of time-delayed controllers which

guarantee the stability of the concerned system is presented. Through three numerical examples, the

effectiveness to enhance the feasible region of the proposed criteria is demonstrated.

& 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Since most real systems use digital computers (usually microprocessors or microcontrollers)
with the necessary input/output hardware to implement the systems, the stability issue of
discrete-time systems has been one of the fundamental research fields in the control community
2.00 & 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

.org/10.1016/j.jfranklin.2012.12.013

nding author. Tel.: þ82 53 8102491; fax: þ82 53 8104767.

dress: jessie@ynu.ac.kr (J.H. Park).

www.elsevier.com/locate/jfranklin
dx.doi.org/10.1016/j.jfranklin.2012.12.013
www.elsevier.com/locate/jfranklin
dx.doi.org/10.1016/j.jfranklin.2012.12.013
dx.doi.org/10.1016/j.jfranklin.2012.12.013
dx.doi.org/10.1016/j.jfranklin.2012.12.013
mailto:jessie@ynu.ac.kr


O.M. Kwon et al. / Journal of the Franklin Institute 350 (2013) 521–540522
because of their diverse applications in engineering fields [1]. On the other hand, time-delays
often occur in many physical systems such as electric power systems with lossless transmission
lines, transport and communication systems, tele-manipulation systems, and so on [2–7]. It is
well known that the presence of time-delays in a system causes undesirable dynamic behaviors
such as performance degradation and instability of the systems. Therefore, stability and
stabilization problems of the discrete-time systems with time-varying delays have been put time
and efforts into by many researchers [8–19] because stability analysis of the concerned system is
an essential requirement in designing a control system.
The main concern in the stability or stabilization of discrete-time systems with time-

varying delays is to enlarge the feasible region which guarantees the asymptotic stability
of the concerned system. One of the important index for checking the enhancement of the
feasible region is to get maximum delay bounds. In this regard, various approaches to
stability analysis for discrete-time systems with time-delays have been investigated in
the literature [8–14]. In [8], the stability criterion which is dependent on minimum and
maximum delay bounds was presented by use of an inequality developed by Moon et al.
[20], and stabilization conditions by static and dynamic output-feedback controllers were
further derived in the framework of LMIs. Based on augmented Lyapunov–Krasovskii
functional, Gao and Chen [9] proposed some new conditions for guaranteeing the asymptotic
stability of discrete-time systems with time-varying delays by circumventing the utilization of
some bounding inequalities for cross products between the two vectors and considering some
ignored terms. In [10], an improved delay-dependent stability criterion was presented and a
sufficient condition for the solvability of the stabilization for discrete-time linear systems via
time-delayed controllers was proposed. By utilizing the S-procedure and some inequality
techniques, a novel stability condition without considering slack variables, which reduces the
computational burden of numerical computation, was derived in [11]. In [12], a delay-
partitioning approach, which divides time-delays interval into some subintervals, was applied
to obtain stability criteria for discrete-time systems for the first time. Recently, a reciprocally
convex approach [21] was utilized to reduce the conservatism of the stability criterion in [13].
Very recently, by using minimal number of slack matrix variables, a less conservative stability
criterion was derived in [14]. However, there are rooms for further improvements to reduce
the conservatism of stability criteria.
On the other hand, as pointed in [10] and [15], there is often a system that the current

system state is not delayed in time but time-delays may exist in a channel from the system to
controller. A typical example of such dynamical systems with a time-varying communica-
tion delay is a networked control system [16]. Thus, in this case, a time-delayed controller
can be naturally considered and it is worth to investigate a design problem of a time-delayed
controller.
Motivated by this discussed above, the problems of stability and stabilization with a time-

delayed controller will be considered. First, by construction of a new augmented Lyapunov–
Krasovskii functional and utilization of reciprocally convex approach introduced by [21], a
new stability criterion is derived in Theorem 1. It should be pointed out that an upper bound
technique for double summation terms in stability analysis of discrete-time systems with time-
delays has not been fully investigated while a bounding method for double integral terms
in stability analysis of continuous-time systems with time-delays were developed and well
known (for example, see [22] and [23]). In order to solve this problem, a new version of
Jenson inequality which estimates double summation terms will be introduced in Lemma 1
and then utilized it to obtain a new stability condition. Based on the results of Theorem 1 and
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motivated by the results [18], a further improved stability criterion will be proposed in
Theorem 2 by applying zero equalities to the results of Theorem 1. Finally, a stabilization
criterion for designing a gain of time-delayed controller will be presented in Theorem 3.
Through three numerical examples, the effectiveness and advantages of the proposed stability
and stabilization criteria will be shown by comparing the maximum delay bounds which
guarantees the asymptotic stability.

Notation: The notations used throughout this paper are fairly standard. Rn is the n-
dimensional Euclidean space, Rm�n denotes the sets of m� n real matrices. The subscript ‘‘T’’
stands for matrix transpose. For symmetric matrices X and Y, X4Y (respectively, XZY )
means that the matrix X�Y is positive definite (respectively, non-negative). X? denotes a
basis for the null-space of X. In, 0n and 0m�n denote n� n identity matrix, n� n and m� n

zero matrices, respectively. J � J refers to the Euclidean vector norm or the induced matrix
norm. diagf� � �g denotes the block diagonal matrix. % represents the elements below the main
diagonal of a symmetric matrix.

2. Problem statements

Consider the following discrete-time systems with interval time-varying delays

xðk þ 1Þ ¼AxðkÞ þ BuðkÞ,

uðkÞ ¼Kxðk�hðkÞÞ,

xðkÞ ¼ fðkÞ,k¼�hM ,�hM þ 1, . . . ,0, ð1Þ

where xðkÞ 2 Rn is the state vector, uðkÞ 2 Rm is the control input vector, A 2 Rn�n and
B 2 Rn�m are known constant matrices, K is the controller gain which will be determined, fðkÞ
is the initial function of system (1), and the delay h(k) is interval time-varying delays satisfying

0ohmrhðkÞrhM ,

where hm and hM are non-negative integer numbers. The aim of this paper is to develop delay-
dependent stability analysis and control synthesis of the system (1). In order to do this, the
following lemmas are needed.

Lemma 1. For 0oM ¼MT 2 Rn�n, two integers hm and hM satisfying hmohM , and a vector

function xðsÞ : ½k�hM ,k�hm�1�-Rn, the following inequalities hold:

�ðhM�hmÞ
Xk�hm�1

s ¼ k�hM

xT ðsÞMxðsÞr�
Xk�hm�1

s ¼ k�hM

xðsÞ

 !T

M
Xk�hm�1

s ¼ k�hM

xðsÞ,

 !
, ð2Þ

�
ðhM�hmÞðhM�hm þ 1Þ

2

� � X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

xT ðuÞMxðuÞ

r�
X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

xðuÞ

 !T

M
X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

xðuÞ

 !
: ð3Þ

Proof. According to the work in [19] and by Schur complement, it can be obtained that

xT ðsÞMxðsÞ xT ðsÞ

% M�1

" #
Z0, ð4Þ
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for any k�hMrsrk�hm�1. Summing the above inequality from k�hM to k�hm�1
leads toPk�hm�1

s ¼ k�hM
xT ðsÞMxðsÞ

Pk�hm�1
s ¼ k�hM

xT ðsÞ

% ðhM�hmÞM
�1

" #
Z0: ð5Þ

Once again, by Schur complement, it follows that

Xk�hm�1

s ¼ k�hM

xT ðsÞMxðsÞZ
Xk�hm�1

s ¼ k�hM

xðsÞ

 !T

ððhM�hmÞ
�1MÞ

Xk�hm�1

s ¼ k�hM

xðsÞ

 !
, ð6Þ

which is equivalent to the inequality (2). Next, we will proof the inequality (3). With
k þ srurk�hm�1 and �hMrsr�hm�1, by changing the variable s into u in Eq. (4), it
can be obtained that

xT ðuÞMxðuÞ xT ðuÞ

% M�1

" #
Z0: ð7Þ

By summing the above inequality from k þ s to k�hm�1, we havePk�hm�1
u ¼ kþs xT ðuÞMxðuÞ

Pk�hm�1
u ¼ kþs xT ðuÞ

% ð�s�hmÞM
�1

" #
Z0: ð8Þ

Finally, by summing the above inequality from �hM to �hm�1, the following inequality
holds: P�hm�1

s ¼ �hM

Pk�hm�1
u ¼ kþs xT ðuÞMxðuÞ

P�hm�1
s ¼ �hM

Pk�hm�1
u ¼ kþs xT ðuÞ

%

P�hm�1
s ¼ �hM

ð�s�hmÞM
�1

2
4

3
5Z0, ð9Þ

which is equivalent to the inequality (3) by Schur complement. This completes the proof.

Lemma 2 (Finsler’s lemma [24]). Let z 2 Rn, F¼FT 2 Rn�n, and U 2 Rm�n such that

rankðUÞon. The following statements are equivalent:
(i)
 zTFzo0, 8Uz¼ 0, za0,

(ii)
 U?

T
FU?o0,
(iii)
 (X 2 Rn�m : Fþ XUþ UTXTo0:
3. Main results

In this section, new stability and stabilization criteria for system (1) will be derived by
use of Lyapunov method and LMI framework [25]. For the sake of simplicity on matrix
representation, ei 2 Rð10nÞ�nði¼ 1, . . . ,10Þ, e.g., e2 ¼ ½0n,In,0n, . . . ,0n�

T are defined as block
entry matrices. The notations of several matrices are defined as

DxðkÞ ¼ xðk þ 1Þ�xðkÞ,

zðkÞ ¼ xT ðkÞ,xT ðk�hmÞ,x
T ðk�hðkÞÞ,xT ðk�hM Þ,DxT ðkÞ,DxT ðk�hmÞ,

�
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DxT ðk�hMÞ,
Xk�1

s ¼ k�hm

xT ðsÞ,
Xk�hm�1

s ¼ k�hðkÞ

xT ðsÞ,
Xk�hðkÞ�1

s ¼ k�hM

xT ðsÞ

#T

,

U¼ ½ðA�InÞ,0n,BK ,0n,�In,0n,0n,0n,0n,0n�,

aðkÞ ¼ xT ðkÞ,xT ðk�hmÞ,x
T ðk�hMÞ,

Xk�1
s ¼ k�hm

xT ðsÞ,
Xk�hm�1

s ¼ k�hM

xT ðsÞ

" #T

,

bðkÞ ¼ ½xT ðkÞ,DxT ðkÞ�,

P1 ¼ ½e1 þ e5,e2 þ e6,e4 þ e7,e1�e2 þ e8,e2�e4 þ e9 þ e10�,

P2 ¼ ½e1,e2,e4,e8,e9 þ e10�, P3 ¼ ½e1,e5�, P4 ¼ ½e2,e6�, P5 ¼ ½e4,e7�,

P6 ¼ ½e8,e1�e2�, P7 ¼ ½e9,e2�e3,e10,e3�e4�,

X1 ¼P1RPT
1�P2RPT

2 ,X2 ¼P3NPT
3 þP4ð�N þMÞPT

4 �P5MPT
5 ,

X3 ¼ ðh
2
mÞP3Q1PT

3 þ ðhM�hmÞ
2P4Q2PT

4 ,

X4 ¼
hmðhm þ 1Þ

2

� �2

e5Q3eT
5 þ

hM�hm

2

� �
ðhM�hm þ 1Þ

� �2

e6Q3e
T
6 ,

�ðhme1�e8ÞQ3ðhme1�e8Þ
T
�ððhM�hmÞe2�e9�e10ÞQ4ððhM�hmÞe2�e9�e10Þ

T ,

C¼�P6Q1PT
6�P7

Q2 S
% Q2

" #
PT

7 ,

F¼
X4
i ¼ 1

Xi: ð10Þ

Now, we have the following theorem.

Theorem 1. For given integers hm, hM satisfying 0ohmohM and a feedback gain matrix K, the

system (1) is asymptotically stable for hmrhðkÞrhM , if there exist positive definite matrices

R 2 R5n�5n,N 2 R2n�2n,M 2 R2n�2n,Q1 2 R2n�2n,Q2 2 R2n�2n, Q3 2 Rn�n, Q4 2 Rn�n, and

any matrix S 2 R2n�2n satisfying the following LMIs:

ðU?ÞT ðFþCÞðU?Þo09n, ð11Þ

Q2 S
% Q2

" #
Z04n, ð12Þ

where F, U are defined in Eq. (10), and U? is the right orthogonal complement of U.

Proof. Define the forward difference of V(k) as

DV ðkÞ ¼V ðk þ 1Þ�V ðkÞ: ð13Þ

Let us consider the following Lyapunov–Krasovskii functional candidate as

V ðkÞ ¼V1ðkÞ þ V2ðkÞ þ V3ðkÞ þ V4ðkÞ, ð14Þ

where

V1ðkÞ ¼ aT ðkÞRaðkÞ,
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V2ðkÞ ¼
Xk�1

s ¼ k�hm

bT
ðsÞN bðsÞ þ

Xk�hm�1

s ¼ k�hM

bT
ðsÞMbðsÞ,

V3ðkÞ ¼ hm

X�1
s ¼ �hm

Xk�1
u ¼ kþs

bT
ðuÞQ1bðuÞ þ ðhM�hmÞ

X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

bT
ðuÞQ2bðuÞ,

V4ðkÞ ¼
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

X�1
u ¼ s

Xk�1
v ¼ kþu

DxT ðvÞQ3DxðvÞ

þ
hM�hm

2

� �
hM�hm þ 1ð Þ

� � X�hm�1

s ¼ �hM

X�1
u ¼ s

Xk�hm�1

v ¼ kþu

DxT ðvÞQ4DxðvÞ: ð15Þ

The forward difference of V1ðkÞ is calculated as

DV1ðkÞ ¼ aT ðk þ 1ÞRaðk þ 1Þ�aT ðkÞRaðkÞ: ð16Þ

Here, it can be confirmed the following equations:

aðk þ 1Þ ¼

xðk þ 1Þ

xðk þ 1�hmÞ

xðk þ 1�hMÞPk
s ¼ kþ1�hm

xðsÞPk�hm

s ¼ kþ1�hM
xðsÞ

2
66666664

3
77777775
¼

xðkÞ þ DxðkÞ

xðk�hmÞ þ Dxðk�hmÞ

xðk�hM Þ þ Dxðk�hMÞ

xðkÞ�xðk�hmÞ

þ
Pk�1

s ¼ k�hm
xðsÞ

 !

xðk�hmÞ�xðk�hM Þ

þ
Pk�hm�1

s ¼ k�hðkÞ xðsÞ

þ
Pk�hðkÞ�1

s ¼ k�hM
xðsÞ

0
BB@

1
CCA

2
66666666666666664

3
77777777777777775

¼PT
1 zðkÞ, ð17Þ

aðkÞ ¼

xðkÞ

xðk�hmÞ

xðk�hM ÞPk
s ¼ k�hm

xðsÞPk�hm�1
s ¼ k�hðkÞ xðsÞ

þ
Pk�hðkÞ�1

s ¼ k�hM
xðsÞ

0
@

1
A

2
66666666664

3
77777777775
¼PT

2 zðkÞ: ð18Þ

Thus, DV1ðkÞ can be represented as

DV1ðkÞ ¼ zT
ðkÞ½P1RPT

1�P2RPT
2 �zðkÞ ¼ zT

ðkÞX1zðkÞ: ð19Þ

The forward difference of V2ðkÞ is obtained as

DV2ðkÞ ¼ bT
ðkÞN bðkÞ�bT

ðk�hmÞN bðk�hmÞ

þbT
ðk�hmÞMbðk�hmÞ�b

T
ðk�hMÞMbðk�hMÞ

¼ zT
ðkÞ P3NPT

3 þP4ð�N þMÞPT
4 �P5MPT

5

� �
zðkÞ

¼ zT
ðkÞX2zðkÞ: ð20Þ



O.M. Kwon et al. / Journal of the Franklin Institute 350 (2013) 521–540 527
Calculating DV3ðkÞ gives

DV3ðkÞ ¼ ðhmÞ
2bT
ðkÞQ1bðkÞ�hm

Xk�1
s ¼ k�hm

bT
ðsÞQ1bðsÞ

þðhM�hmÞ
2bT
ðk�hmÞQ2bðk�hmÞ�ðhM�hmÞ

Xk�hm�1

s ¼ k�hM

bT
ðsÞQ2bðsÞ: ð21Þ

Here, by utilizing Eq. (2) of Lemma 1, it can be obtained that

�hm

Xk�1
s ¼ k�hm

bT
ðsÞQ1bðsÞ ¼ �hm

Xk�1
s ¼ k�hm

xðsÞ

DxðsÞ

" #T

Q1

xðsÞ

DxðsÞ

" #

r�
Xk�1

s ¼ k�hm

xðsÞ

DxðsÞ

" # !T

Q1

Xk�1
s ¼ k�hm

xðsÞ

DxðsÞ

" # !

¼�

Pk�1
s ¼ k�hm

xðsÞ

xðkÞ�xðk�hmÞ

" #T

Q1

Pk�1
s ¼ k�hm

xðsÞ

xðkÞ�xðk�hmÞ

" #
: ð22Þ

When hmohðkÞohM , we have

�ðhM�hmÞ
Xk�hm�1

s ¼ k�hM

bT
ðsÞQ2bðsÞ

¼�ðhM�hmÞ
Xk�hm�1

s ¼ k�hðkÞ

xðsÞ

DxðsÞ

" #T

Q2

xðsÞ

DxðsÞ

" #

�ðhM�hmÞ
Xk�hðkÞ�1

s ¼ k�hM

xðsÞ

DxðsÞ

" #T

Q2

xðsÞ

DxðsÞ

" #

r�

Pk�1
s ¼ k�hðkÞ xðsÞ

xðk�hmÞ�xðk�hðkÞÞPk�hðkÞ�1
s ¼ k�hM

xðsÞ

xðk�hðkÞÞ�xðk�hMÞ

2
66664

3
77775

T

Q2=ð1�akÞ 02n

% Q2=ak

" # Pk�1
s ¼ k�hðkÞ xðsÞ

xðk�hmÞ�xðk�hðkÞÞPk�hðkÞ�1
s ¼ k�hM

xðsÞ

xðk�hðkÞÞ�xðk�hMÞ

2
66664

3
77775,

ð23Þ

where ak ¼ ðhM�hðkÞÞðhM�hmÞ
�1 which satisfies 0oako1.

By reciprocally convex approach [21], if the inequality (12) holds, then the following
inequality holds

ffiffiffiffiffiffiffiffiffiffiffi
ak

1�ak

r
I2n 02n

% �

ffiffiffiffiffiffiffiffiffiffiffi
1�ak

ak

r
I2n

2
6664

3
7775
Q2 S
% Q2

" # ffiffiffiffiffiffiffiffiffiffiffi
ak

1�ak

r
I2n 02n

% �

ffiffiffiffiffiffiffiffiffiffiffi
1�ak

ak

r
I2n

2
6664

3
7775Z04n, ð24Þ
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which implies

Q2=ð1�akÞ 02n

% Q2=ak

" #
Z

Q2 S
% Q2

" #
: ð25Þ

Thus, from Eqs. (23) and (25), we have

�ðhM�hmÞ
Xk�hm�1

s ¼ k�hM
bT
ðsÞQ2bðsÞ

r�

Pk�hm�1
s ¼ k�hðkÞ xðsÞ

xðk�hmÞ�xðk�hðkÞÞPk�hðkÞ�1
s ¼ k�hM

xðsÞ

xðk�hðkÞÞ�xðk�hM Þ

2
66664

3
77775

T

Q2 S
% Q2

" # Pk�hm�1
s ¼ k�hðkÞ xðsÞ

xðk�hmÞ�xðk�hðkÞÞPk�hðkÞ�1
s ¼ k�hM

xðsÞ

xðk�hðkÞÞ�xðk�hMÞ

2
66664

3
77775: ð26Þ

It should be noted that when hðkÞ ¼ hm or hðkÞ ¼ hM , we have xðk�hmÞ�xðk�hðkÞÞ ¼ 0
or xðk�hðkÞÞ�xðk�hMÞ ¼ 0, respectively. Thus, Eq. (26) still holds. Therefore, an upper
bound of DV3ðkÞ can be represented as

DV3ðkÞrzT
ðkÞ ðh2

mÞP3Q1PT
3 þ ðhM�hmÞ

2P4Q2PT
4�P6Q2PT

6�P7

Q2 S
% Q2

" #
PT

7

" #
zðkÞ

¼ zT
ðkÞðX3 þCÞzðkÞ: ð27Þ

The calculation of DV4ðkÞ leads to

DV4ðkÞ ¼
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

X�1
u ¼ s

Xk

v ¼ kþuþ1

DxT ðvÞQ3DxðvÞ�
Xk�1

v ¼ kþu

DxT ðvÞQ3DxðvÞ

 !

þ
hM�hm

2

� �
hM�hm þ 1ð Þ

� �

�
X�hm�1

s ¼ �hM

X�hm�1

u ¼ s

Xk�hm

v ¼ kþuþ1

DxT ðvÞQ4DxðvÞ�
Xk�hm�1

v ¼ kþu

DxT ðvÞQ4DxðvÞ

 !

¼
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

X�1
u ¼ s

DxT ðkÞQ3DxðkÞ�DxT ðk þ uÞQ3Dxðk þ uÞ
� �

þ
hM�hm

2

� �
hM�hm þ 1ð Þ

� �

�
X�hm�1

s ¼ �hM

X�hm�1

u ¼ s

DxT ðk�hmÞQ4Dxðk�hmÞ�DxT ðk þ uÞQ4Dxðk þ uÞ
� �

¼
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

ð�sÞDxT ðkÞQ3DxðkÞ�
X�1
u ¼ s

DxT ðk þ uÞQ3Dxðk þ uÞ

 !

þ
hM�hm

2

� �
hM�hm þ 1ð Þ

� �

�
X�hm�1

s ¼ �hM

ð�s�hmÞDxT ðk�hmÞQ4Dxðk�hmÞ�
X�hm�1

u ¼ s

DxT ðk þ uÞQ4Dxðk þ uÞ

 !
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¼
hmðhm þ 1Þ

2

� �2

DxT ðkÞQ3DxðkÞ

�
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

X�1
u ¼ s

Dxðk þ uÞQ3Dxðk þ uÞ

þ
hM�hm

2

� �
hM�hm þ 1ð Þ

� �2

DxT ðk�hmÞQ4Dxðk�hmÞ

�
hM�hm

2

� �
hM�hm þ 1ð Þ

� � X�hm�1

s ¼ �hM

X�hm�1

u ¼ s

DxT ðk þ uÞQ4Dxðk þ uÞ: ð28Þ

By utilizing Eq. (2) of Lemma 1, it should be noted that

�
hmðhm þ 1Þ

2

� � X�1
s ¼ �hm

X�1
u ¼ s

Dxðk þ uÞQ3Dxðk þ uÞ

r�
X�1

s ¼ �hm

Dxðk þ uÞ

 !T

Q3

X�1
s ¼ �hm

Dxðk þ uÞ

 !

¼�
X�1

s ¼ �hm

ðxðkÞ�xðk þ sÞÞ

 !T

Q3

X�1
s ¼ �hm

ðxðkÞ�xðk þ sÞÞ

 !

¼� hmxðkÞ�
Xk�1

s ¼ k�hm

xðsÞ

 !T

Q3 hmxðkÞ�
Xk�1

s ¼ k�hm

xðsÞ

 !

¼�zT
ðkÞ ðhme1�e8ÞQ3ðhme1�e8Þ

T
� �

zðkÞ, ð29Þ

and

�
hM�hm

2

� �
hM�hm þ 1ð Þ

� � X�hm�1

s ¼ �hM

X�hm�1

u ¼ s

DxT ðk þ uÞQ4Dxðk þ uÞ

r�
X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

DxðuÞ

 !T

Q4

X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

DxðuÞ

 !

¼�
X�hm�1

s ¼ �hM

ðxðk�hmÞ�xðk þ sÞÞ

 !T

Q4

X�hm�1

s ¼ �hM

ðxðk�hmÞ�xðk þ sÞÞ

 !

¼� ðhM�hmÞxðk�hmÞ�
Xk�hm�1

s ¼ k�hM

xðsÞ

 !T

Q4 ðhM�hmÞxðk�hmÞ�
Xk�hm�1

s ¼ k�hM

xðsÞ

 !

¼� ðhM�hmÞxðk�hmÞ�
Xk�hm�1

s ¼ k�hðkÞ

xðsÞ�
Xk�hðkÞ�1

s ¼ k�hM

xðsÞ

 !T

Q4

� ðhM�hmÞxðk�hmÞ�
Xk�hm�1

s ¼ k�hðkÞ

xðsÞ�
Xk�hðkÞ�1

s ¼ k�hM

xðsÞ

 !

¼�zT
ðkÞ ððhM�hmÞe2�e9�e10ÞQ4ððhM�hmÞe2�e9�e10Þ

T
� �

zðkÞ: ð30Þ
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Therefore, from Eqs. (29) and (30), an upper bound of DV4ðkÞ can be

DV4ðkÞrzT
ðkÞX4zðkÞ: ð31Þ

From Eqs. (13) to (31), DV ðkÞ has a new upper bound as

DV ðkÞrzT
ðkÞ

X4
i ¼ 1

Xi þC

 !
zðkÞ � zT

ðkÞðFþCÞzðkÞ: ð32Þ

Also, the system (1) with the augmented matrix zðkÞ can be rewritten as UzðkÞ ¼ 0n�1. Then,
a delay-dependent stability condition for the system (1) is

zT
ðkÞðFþCÞzðkÞo0 subject to UzðkÞ ¼ 0n�1: ð33Þ

By Lemma 2, the condition (33) is equivalent to the inequality (11). Therefore, if the inequality
(11) and (12) hold, then the system (1) is asymptotically stable by Lyapunov stability. This
completes our proof. &

Remark 1. In the field of delay-dependent stability analysis, one of the major concerns is to
get maximum delay bounds with fewer decision variables [7]. From Lemma 2, one can
check that U?

T
FU?o0 is equivalent to the existence of X such that Fþ XUþ UTXTo0

holds. Any matrix X of the condition (iii) of Lemma 2 plays a role as a free-weighting
matrices X ¼ ½X T

1 ,X
T
2 , . . . ,X

T
10�

T of zero equality 2zT
ðkÞXUzðkÞ ¼ 0. However, the condition

(iii) of Lemma 2 has and disadvantage of more decision variables than the condition (ii) of
Lemma 2. Therefore, our proposed stability criteria are derived in the form of (ii) in
Lemma 2.

Remark 2. In [9–14], the following equation in the form of double summation

X�hm�1

s ¼ �hM

Xk�1
u ¼ kþs

DxT ðuÞRDxðuÞ, ð34Þ

were utilized in the Lyapunov–Krasovskii functional. In Eq. (34), we set the interval of
double summation �hMrsr�hm�1 and k þ srurk�1. Since the parameter s has the
interval from �hM to �hm�1, it may be effective to reduce the conservatism of stability
criteria if the maximum value of u is changed as k�hm�1 instead of k�1. In the continuous
stability criteria for systems with interval time-varying delays, one can confirm this fact in
[26] and [27]. With this regard, in Theorem 1, the terms

ðhM�hmÞ
X�hm�1

s ¼ �hM

Xk�hm�1

u ¼ kþs

bT
ðuÞQ2bðuÞ, ð35Þ

and

hM�hm

2

� �
hM�hm þ 1ð Þ

� � X�hm�1

s ¼ �hM

X�1
u ¼ s

Xk�hm�1

v ¼ kþu

DxT ðvÞQ4DxðvÞ, ð36Þ

were proposed for the first time at each V3 and V4, respectively.

Remark 3. In the proposed Laypunov–Krasovsikii functional (14), the utilized augmented
vector includes the terms such as

Pk�1
s ¼ k�hm

xðsÞ,
Pk�hm�1

s ¼ k�hðkÞ xðsÞ, and
Pk�hðkÞ�1

s ¼ k�hM
xðsÞ. By

these terms, more past history of x(k) can be utilized, which may lead less conservative
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results. Thus, V1ðkÞ and V3ðkÞ in which the summation terms can obtained by calculating
DV1ðkÞ and DV3ðkÞ are proposed in this paper.

Based on Theorem 1, a further improved delay-dependent stability criterion of the system
(1) is given by the following theorem.

Theorem 2. For given integers hm, hM satisfying 0ohmohM and a controller gain K, the system

(1) is asymptotically stable for hmrhðkÞrhM , if there exist positive definite matricesR 2 R5n�5n,
N 2 R2n�2n,M 2 R2n�2n, Q1 2 R2n�2n, Q2 2 R2n�2n, Q3 2 Rn�n, Q4 2 R

n�n, any symmetric

matrices Pi 2 Rn�nði¼ 1,2,3Þ, and any matrix S 2 R2n�2n satisfying the following LMIs:

ðU?ÞT ðFþ ~C þ OÞðU?Þo09n, ð37Þ

Q1 þ
0n P1

% P1

" #
402n, ð38Þ

ð39Þ

where F, U are defined in Eq. (10), U? is the right orthogonal complement of U,

ð40Þ

and

O¼ hme1P1e
T
1 �hme2P1e

T
2 þ ðhM�hmÞðe2P2e2 þ e3ð�P2 þ P3Þe

T
3�e4P3eT

4 Þ, ð41Þ

Proof. Let us consider the same Lyapunov–Krasovskii functional introduced in Eq. (14).
For any matrix P, integers l1 and l2 satisfying l1ol2, and vector function xðsÞ : ½k�l2,
k�l1�1�-Rn, the following equality holds:

xT ðk�l1ÞPxðk�l1Þ�xT ðk�l2ÞPxðk�l2Þ ¼
Xk�l1�1

s ¼ k�l2

ðxT ðsþ 1ÞPxðsþ 1Þ�xT ðsÞPxðsÞÞ:

ð42Þ

It should be noted that

xT ðsþ 1ÞPxðsþ 1Þ�xT ðsÞPxðsÞ

¼ ðDxðsÞ þ xðsÞÞT PðDxðsÞ þ xðsÞÞ�xT ðsÞPxðsÞ

¼DxT ðsÞPDxðsÞ þ 2xT ðsÞPDxðsÞ: ð43Þ

From the equalities (42) and (43), by choosing ðl1,l2Þ as ð0,hmÞ, ðhm,hðkÞÞ, ðhðkÞ,hM Þ,
respectively, the following three zero equalities with any symmetric matrices Piði¼ 1,2,3Þ hold:

0¼ xT ðkÞðhmP1ÞxðkÞ�xT ðk�hmÞðhmP1Þxðk�hmÞ
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�hm

Xk�1
s ¼ k�hm

ðDxT ðsÞP1DxðsÞ þ 2xT ðsÞP1DxðsÞÞ, ð44Þ

0¼ xT ðk�hmÞððhM�hmÞP2Þxðk�hmÞ�xT ðk�hðkÞÞððhM�hmÞP2Þxðk�hðkÞÞ

�ðhM�hmÞ
Xk�hm�1

s ¼ k�hðkÞ

ðDxT ðsÞP2DxðsÞ þ 2xT ðsÞP2DxðsÞÞ, ð45Þ

0¼ xT ðk�hðkÞÞððhM�hmÞP3Þxðk�hðkÞÞ�xT ðk�hMÞððhM�hmÞP3Þxðk�hMÞ

�ðhM�hmÞ
Xk�hðkÞ�1

s ¼ k�hM

DxT ðsÞP3DxðsÞ þ 2xT ðsÞP3DxðsÞ
� �

: ð46Þ

By adding the above three zero equalities to Eq. (21) and using the similar method shown in
Eq. (22) and (23), if (38) and (39) hold, then a new upper bound of DV3ðkÞ can be obtained as

DV3ðkÞ ¼ xT ðkÞðhmP1ÞxðkÞ�xT ðk�hmÞðhmP1Þxðk�hmÞ

þxT ðk�hmÞððhM�hmÞP2Þxðk�hmÞ�xT ðk�hðkÞÞððhM�hmÞP2Þxðk�hðkÞÞ

þxT ðk�hðkÞÞððhM�hmÞP3Þxðk�hðkÞÞ�xT ðk�hMÞððhM�hmÞP3Þxðk�hMÞ

þðhmÞ
2bT
ðkÞQ1bðkÞ þ ðhM�hmÞ

2bT
ðk�hmÞQ2bðkÞ

�hm

Xk�1
s ¼ k�hm

bT
ðsÞ Q1 þ

0n P1

% P1

" # !
bðsÞ

�ðhM�hmÞ
Xk�hm�1

s ¼ k�hðkÞ

bT
ðsÞ Q2 þ

0n P2

% P2

" # !
bðsÞ

�ðhM�hmÞ
Xk�ðkÞ�1

s ¼ k�hM

bT
ðsÞ Q2 þ

0n P3

% P3

" # !
bðsÞ

rzT
ðkÞðX3 þ ~C þ OÞzðkÞ: ð47Þ

The other procedure is straightforward from the proof of Theorem 1, so it is omitted. &

Remark 4. In Theorem 2, motivated by the work [18], three zero equalities (44)–(46) were
proposed and utilized to reduce the conservatism of the stability condition presented

in Theorem 1. As presented in Eqs. (44)–(46), the terms xT ðkÞðhmP1ÞxðkÞ� xT ðk�hmÞ

ðhmP1Þxðk�hmÞ, xT ðk�hmÞððhM�hmÞP2Þxðk�hmÞ�xT ðk�hðkÞÞððhM�hmÞP2Þx ðk�hðkÞÞ, and

xT ðk�hðkÞÞððhM�hmÞP3Þxðk�hðkÞÞ�xT ðk�hM ÞððhM�hmÞP3Þxðk�hM Þ provide the enhanced
feasible region of the stability. Furthermore, as shown in Eq. (47), the three summation terms

in Eqs. (44)–(46) are merged into �hm

Pk�1
s ¼ k�hm

bT
ðsÞQ1bðsÞ, �ðhM�hmÞ

Pk�hm�1
s ¼ k�hðkÞ b

T
ðsÞ

Q2bðsÞ, and �ðhM�hmÞ
Pk�ðkÞ�1

s ¼ k�hM
bT
ðsÞQ2bðsÞ, which cause the conservatism in estimating

DV3ðkÞ. Therefore, comparing with the Eqs. (22) and (23), the obtained estimation of DV3ðkÞ

in Eq. (47) has more flexibility due to the existence of Pi. Without loss of generality, if
Piði¼ 1,2,3Þ in Theorem 2 are zero matrices, then the corresponding stability condition is
equal to the stability criterion presented in Theorem 1 since the same Lyapunov–Krasovskii
functional and augmented vector zðkÞ of Theorem 2 are used in Theorem 1. Through one
numerical example, the enhancement of feasible region of Theorem 2 comparing with those of
Theorem 1 will be shown by investigating maximum delay bounds.
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Finally, based on the result of Theorem 2, a designing method of time-delayed controller
gain K will be proposed in Theorem 3. For simplicity, the notations which will be used in
Theorem 3 are defined as

X̂1 ¼P1R̂PT
1�P2R̂PT

2 ,X̂2 ¼P3N̂PT
3 þP4ð�N̂ þ M̂ÞPT

4�P5M̂PT
5 ,

X̂3 ¼ ðh
2
mÞP3Q̂1PT

3 þ ðhM�hmÞ
2P4Q̂2PT

4 ,

X̂4 ¼
hmðhm þ 1Þ

2

� �2

e5Q̂3e
T
5 þ

hM�hm

2

� �
ðhM�hm þ 1Þ

� �2

e6Q̂3e
T
6 ,

�ðhme1�e8ÞQ̂3ðhme1�e8Þ
T
�ððhM�hmÞe2�e9�e10ÞQ̂4ððhM�hmÞe2�e9�e10Þ

T ,

F̂ ¼
X4
i ¼ 1

X̂i: ð48Þ

Now, we have the following theorem.

Theorem 3. For given integers 0ohmohM and a scalar value d, the system (1) under the

controller uðkÞ ¼YX�1xðk�hðkÞÞ is asymptotically stabilized for hmrhðkÞrhM , if there exist

positive definite matrices R̂ 2 R5n�5n, N̂ 2 R2n�2n, M̂ 2 R2n�2n, Q̂1 2 R2n�2n, Q̂2 2 R2n�2n,

Q̂3 2 Rn�n, Q̂4 2 Rn�n, any symmetric matrices P̂i 2 Rn�nði¼ 1,2,3Þ, any matrix Ŝ 2 R2n�2n,
X 2 Rn�n, and Y 2 Rm�n satisfying the following LMIs:

F̂ þ ~C þ Ô þ ĜL̂ þ L̂
T
Ĝ

T
o0, ð49Þ

Q̂1 þ
0n P̂1

% P̂1

" #
40, ð50Þ

ð51Þ

where F̂ is defined in (48),

Ô ¼ hme1P̂1eT
1�hme2P̂1e

T
2 þ ðhM�hmÞðe2P̂2e2 þ e3ð�P̂2 þ P̂3Þe

T
3 �e4P̂3e

T
4 Þ,

Ĝ ¼ e1X þ e5ðdX Þ½ �, ð52Þ

and

L̂ ¼ ½ðA�InÞX ,0n,BY ,0n,�X ,0n,0n,0n,0n,0n�: ð53Þ

Proof. Let us define

G¼ ½e1F þ e5ðdF Þ�, ð54Þ
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and

L¼ ½ðA�InÞ,0n,BK ,0n,�In,0n,0n,0n,0n,0n�: ð55Þ

Then, the following zero equation holds for any matrix F:

0¼ 2½xT ðkÞF þ DxT ðkÞðdF Þ�½ðA�InÞxðkÞ þ BKxðk�hðkÞÞ�DxðkÞ�

¼ zT
ðkÞ½GLþ LTGT �zðkÞ: ð56Þ

With the same Lyapunov–Krasovskii functional candidate in Eq. (14) and considering
Eq. (56), by using the similar method presented in the proofs of Theorems 1 and 2, a
sufficient condition guaranteeing the asymptotic stability for the system (1) can be

Fþ ~C þ Oþ GLþ LTGTo0, ð57Þ

where F, ~C, and O are the same notations used in Theorem 2. Let us define

X ¼ F�1,

R̂ ¼ diagfX ,X ,X ,X ,X gTR diagfX ,X ,X ,X ,X g,

N̂ ¼ diagfX ,X gTN diagfX ,X g,

M̂ ¼ diagfX ,X gTM diagfX ,X g,

Q̂1 ¼ diagfX ,X gTQ1 diagfX ,X g,

Q̂2 ¼ diagfX ,X gTQ2 diagfX ,X g,

Q̂3 ¼X T Q3X ,Q̂4 ¼X T Q4X ,

Ŝ ¼ diagfX ,X gTS diagfX ,X g,

P̂1 ¼X TP1X ,

P̂2 ¼X TP2X ,

P̂3 ¼X TP3X , ð58Þ

and Y¼KX. Then, pre- and post-multiplying inequality (57) by matrices diag fX ,X ,X ,X ,
X ,X ,X ,X ,X ,X gT and diagfX ,X ,X ,X ,X ,X ,X ,X ,X ,X g leads to LMIs (49). Also, the
conditions (38) and (39) in Theorem 2 are changed into the two inequalities (50) and (51).
This completes our proof. &
4. Numerical examples

In this section, we provide three numerical examples to illustrate the effectiveness of the
stability and stabilization criteria developed by this paper.

Example 1. Consider the following system:

xðk þ 1Þ ¼
0:8 0

0:05 0:9

	 

xðkÞ þ

�0:1 0

�0:2 �0:1

	 

xðk�hðkÞÞ, ð59Þ

which was used to check the feasible region of stability criteria in [8–11], [13,14].
For various low bound of h(k), the comparison of the obtained results by applying
Theorems 1 and 2 to the above system is conducted as listed in Table 1. From Table 1, it
can be confirmed that Theorem 1 provides larger feasible region than those of [8–11]
and [13,14] except for the case of hm¼0. However, it can be seen that the results obtained
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by Theorem 2 clearly reduce the conservatism of Theorem 1 by utilizing three zero
equalities proposed in Eqs. (44)–(46).

Remark 5. Recently, the delay-partitioning approaches to enhance the feasible region of
discrete-time system with interval time-varying delays were proposed in [12] for the first
time. The advantage of the delay-partitioning approaches can obtain more tighter upper
bound of summation terms obtained by calculating DV ðkÞ by dividing delay intervals into
some subintervals. However, when delay-partitioning number increases, the decision
number also increases. Furthermore, matrix formulation becomes more complex and the
computational burden and time-consuming grow bigger. In Table 2, maximum delay
bounds and number of decision variables are compared with the results of [9] and [12].
Table 2 shows that the obtained results of Theorem 2 provides larger delay bounds than all
the results of [9] and [12], although the decision variables of Theorem 1 and 2 are smaller
than those of [9] and [12].

Example 2. Consider the following model of inverted pendulum described in [9] and
shown in Fig. 1

_xðtÞ ¼

0 1
3ðM þmÞg

lð4M þmÞ
0

2
4

3
5xðtÞ þ

0

�
3

lð4M þmÞ

2
4

3
5uðtÞ: ð60Þ

By choosing M ¼ 8 kg, m¼ 2:0 kg, l ¼ 0:5 m, g¼ 9:8 m=s2 and sampling time Ts ¼ 30 ms,
the continuous-time system (60) can be transformed as the following discrete-time system

xðk þ 1Þ ¼
1:0078 0:0301

0:5202 1:0078

	 

xðkÞ þ

�0:0001

�0:0053

	 

uðkÞ: ð61Þ

Then, the poles of the system (61) are 1.1329 and 0.8827, thus this system is unstable. In
Table 3, the obtained delay bounds when hm¼1 and the corresponding controller by
applying Theorem 3 are compared with those of [9] and [10]. From Table 3, with smaller
controller gain than those of [9] and [10], Theorem 3 gives larger delay bounds. To confirm
this result, simulation result by applying our derived controller gain is included in Fig. 2
which shows that the state responses converge to zero when initial values of the states are
xð0Þ ¼ ½1,�1�T and time-delay h(k) is assumed as hðkÞ ¼ 6jsinðpk=2Þj þ 1 2 ½1,7�.

Example 3. Consider another practical system which is the satellite system [28,29]. The
satellite system shown in Fig. 3 [29] has two rigid bodies joined by a flexible link. The
Table 1

Maximum bounds hM with different hm (Example 1).

Method 0 2 4 6 7 10 12 13 15 16 20 25 30

[8] 6 7 8 9 10 12 13 14 16 17 20 25 30

[9] 12 13 13 14 14 15 17 17 18 19 22 26 30

[10] 12 13 13 14 15 17 18 19 20 21 24 29 33

[11] 12 14 15 16 16 18 20 20 21 23 25 30 34

[13] 17 17 17 18 18 20 21 22 23 24 27 31 35

[14] 17 17 17 18 18 20 21 22 23 24 27 31 35

Theorem 1 16 17 17 18 19 20 21 22 24 24 27 31 36

Theorem 2 22 22 22 22 22 23 23 24 25 26 28 32 36



Table 2

Maximum bounds hM when hm¼16 (Example 1).

Method hM Number of variables

[9] 19 143

[12] (m¼1, t¼ 16) 24 138

[12] (m¼2, t¼ 8) 24 195

[12] (m¼4, t¼ 4) 25 345

[12] (m¼8, t¼ 2) 25 789

Theorem 1 24 117

Theorem 2 26 126

Fig. 1. Inverted pendulum system (Example 2).

Table 3

Maximum bounds hM and controller gains K when hm¼1 (Example 2).

Method hM K

[9] 3 [102.9100, 80.7916]

[10] 4 [110.6827, 34.6980]

Theorem 3 (d¼ 1000) 7 [98.5858, 24.0621]
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dynamic equations of this system are as follows:

J1
€y1ðtÞ þ f ð _y1ðtÞ� _y2ðtÞÞ þ kðy1ðtÞ�y2ðtÞÞ ¼ uðtÞ,

J2
€y2ðtÞ þ f ð _y1ðtÞ� _y2ðtÞÞ þ kðy1ðtÞ�y2ðtÞÞ ¼ 0, ð62Þ

where Jiði¼ 1,2Þ are the moments of inertia of the two bodies (the main body and the
instrumentation module), f is a viscous damping, k is a torque constant, yiðtÞði¼ 1,2Þ are the
yaw angles for the two bodies, and u(t) is a control input. Assume Jiði¼ 1,2Þ ¼ 1, k¼0.09,
f¼0.04, and state vector xðtÞ ¼ ½x1ðtÞ,x2ðtÞ,x3ðtÞ,x4ðtÞ�

T ¼ ½y1ðtÞ,y2ðtÞ, _y1ðtÞ, _y2ðtÞ�T . By choos-
ing sampling time Ts ¼ 10 ms, the system (62) can be transformed as the following discrete
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Fig. 2. State responses of inverted pendulum system (Example 2).

Fig. 3. Satellite system (Example 3).
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system:

xðk þ 1Þ ¼

1 0 0:01 0

0 1 0 0:01

�0:009 0:009 0:9996 0:0004

0:009 �0:009 0:0004 0:9996

2
6664

3
7775xðkÞ þ

0

0

0:01

0

2
6664

3
7775uðkÞ: ð63Þ

By applying Theorem 3 to the above system when hm¼1 and d¼ 110, the maximum delay
bound can be obtained as hM¼109 and the corresponding time-delayed controller gain as
K ¼ 0:1284,�0:1380,�0:3049,0:0522½ �. With the controller gain obtained by Theorem 3,
one can get maximum delay bounds listed in Table 4. From Table 4, our proposed stability
criteria significantly enhance the feasible region comparing with those of [8–11] and [13,14]. To
Table 4

Maximum bounds hM when hm¼1 (Example 3).

Method hM

[8] 40

[11] 71

[9] 98

[10] 98

[13] 98

[14] 98

Theorem 1 129

Theorem 2 135
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Fig. 4. Responses of the satellite system (Example 3).
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check the effectiveness of the obtained results, simulation result by applying our derived
controller gain is included in Fig. 4 which shows that the state responses converge to zero when
initial values of the states are xð0Þ ¼ ½1,�0:5,1:5,�1�T and time-delay h(k) is assumed as
hðkÞ ¼ 134jsinðpk=2Þj þ 1 2 ½1,135�.

5. Conclusions

In this paper, two delay-dependent stability criteria and one stabilization criterion
for the discrete-time systems with interval time-varying delays have been proposed. By
constructing the suitable augmented Lyapunov–Krasovskii functional and vector, the
improved stability criterion was derived in Theorem 1. Based on the results of Theorem 1
and utilizing zero equalities (44)–(46), the further improved result was proposed in
Theorem 2. Also, the designing method of time-delayed controller gain was presented in
Theorem 3. Three numerical examples have been given to show the effectiveness and
usefulness of the presented criteria.
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