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delay-dependent exponential stability criteria for the networks are established in terms of linear matrix
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1. Introduction

During last two decades, the dynamics of neural networks have been extensively studied due to their extensive applications in the fields
of pattern recognition, optimization problems, associative memories, signal processing, fixed-point computation, and so on. Therefore,
considerable efforts have been done to the stability analysis of various types of neural networks since these applications rely on the
dynamic behaviors of the equilibrium point of the networks. For example, see the works of [1,2] and references therein. On the other
hand, in the processing of storage and transmission of information, time-delays often occur due to the finite switching speed of amplifiers
in electronic networks or finite speed for signal propagation in biological networks. The important factor is that the delays may cause
instability and oscillation of neural networks. Hence, many researchers have focused on the stability analysis of delayed cellular neural
networks in recent years [3–13].

Recently, increasing attentions for the stability analysis of the stochastic neural networks have been paid by some researchers [14–16]
since the synaptic transmission in real nervous systems is a noisy process brought on by random fluctuations from the release of neuro-
transmitters and other probabilistic causes [17]. In this regard, delay-dependent stability analysis of uncertain stochastic neural networks
with time-varying delays has been studied in [14–16] since it is well known that delay-dependent stability analysis is in general less
conservative than delay-independent stability ones when the size of time-delays are small. In the literature [14–16], by constructing some
suitable Lyapunov–Krasovskii’s functionals, several improved stability criteria are derived in terms of LMIs with the recently developed
free-weighting matrices techniques. However, there are still rooms for further improvement to the stability criteria for uncertain stochastic
neural networks with time-varying delays.

In this Letter, we propose new improved delay-dependent exponential stability criteria for uncertain stochastic neural networks with
time-varying delays. Additional stochastic perturbations are considered as two cases: 1) trace bounded and 2) linear function and norm-
bounded. By constructing suitable Lyapunov–Krasovskii’s functionals, new delay-dependent stability criteria for uncertain stochastic neural
networks with time-varying delays are proposed. The derived stability criteria have the form of LMIs which can be solved efficiently by
using the interior-point algorithm [18]. As a tradeoff between the computational burden and the reduction of the conservatism of stability
criteria, delay fraction number is chosen as two. And no free-weighting matrices are employed in obtaining upper bounds of integral terms
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obtained by calculating the stochastic differential of Lyapunov–Krasovskii’s functionals. Three numerical examples are given and compared
with the very recent results to show the improved results with less decision variables.

Notation: ‖ · ‖ refers to the Euclidean vector norm and the induced matrix norm. For symmetric matrices X and Y , the notation X > Y
(respectively, X � Y ) means that the matrix X − Y is positive definite (respectively, nonnegative). diag{· · ·} denotes the block diagonal
matrix. � represents the elements below the main diagonal of a symmetric matrix. I is the identity matrix with appropriate dimension.
For h > 0, C([−h,0],Rn) means the family of continuous functions φ from [−h,0] to Rn with the norm ‖φ‖ = sup−h�s�0 |φ(s)|. Let
(Ω,F , {Ft}t�0, P ) be a complete probability space with a filtration {Ft}t�0 satisfying the usual conditions (i.e. it is right continuous and
F0 contains all P -pull sets). E{·} stands for the mathematical expectation operator with respect to the given probability measure P .

2. Problem statement

Consider the following uncertain neural networks with discrete time-varying delays:

v̇(t) = −(
A + �A(t)

)
v(t) + (

W0 + �W0(t)
)

g
(

v(t)
) + (

W1 + �W1(t)
)

g
(

v
(
t − h(t)

)) + b (1)

where v(t) = [v1(t), . . . , vn(t)]T ∈ Rn is the neuron state vector, n denotes the number of neurons in a neural network, g(v(t)) =
[g1(v1(t)), . . . , gn(vn(t))]T ∈ Rn represents the neuron activation function, g(v(t − h(t))) = [g1(v1(t − h(t))), . . . , gn(vn(t − h(t)))]T ∈ Rn ,
A = diag{ai} is a positive diagonal matrix, W0 = (w0

i j)n×n , and W1 = (w1
i j)n×n are the interconnection matrices representing the weight

coefficients of the neurons, b = [b1,b2, . . . ,bn]T means a constant input vector, and �A(t), �W0(t), and �W1(t), are the uncertainties of
system matrices of the form[

�A(t) �W0(t) �W1(t)
] = D F (t)

[
E1 E2 E3

]
, F T (t)F (t) � I, ∀t � 0, (2)

where D and Ei are constant matrices and F (t) is the time-varying nonlinear function.
The delays, h(t), are time-varying continuous functions that satisfies 0 � h(t) � hU , ḣ(t) � hD where hU is positive constant and hD is

any constant one.
The activation functions, gi(vi(t)), i = 1, . . . ,n, are assumed to posses the following properties:

(A1) gi is bounded on Rn , and gi(0) = 0 (i = 1, . . . ,n).
(A2) There exist real numbers k−

i and k+
i (i = 1, . . . ,n) such that

k−
i � gi(ξi) − gi(ξ j)

ξi − ξ j
� k+

i , ξi, ξ j ∈ R, ξi �= ξ j, i, j = 1, . . . ,n. (3)

For simplicity, in stability analysis of the system (1), the equilibrium point v∗ = [v∗
1, . . . , v∗

n]T is shifted to the origin by utilizing the
transformation x(·) = v(·) − v∗ , which leads the system (1) to the following form:

ẋ(t) = −(
A + �A(t)

)
x(t) + (

W0 + �W0(t)
)

f
(
x(t)

) + (
W1 + �W1(t)

)
f
(
x
(
t − h(t)

))
(4)

where x(t) = [x1(t), . . . , xn(t)]T ∈ Rn is the state vector of the transformed system, f (x(t)) = [ f1(x(t)), . . . , fn(x(t))]T and f i(xi(t)) =
gi(xi(t) + v∗

i ) − gi(v∗
i ).

Here, the activation functions f i satisfy the following properties:

(B1) f i is bounded on Rn , and f i(0) = 0 (i = 1, . . . ,n).
(B2) There exist real numbers k−

i and k+
i (i = 1, . . . ,n) such that

k−
i � f i(ξi) − f i(ξ j)

ξi − ξ j
� k+

i , ξi, ξ j ∈ R, ξi �= ξ j, i, j = 1, . . . ,n. (5)

In this Letter, we consider the following uncertain stochastic neural networks with time-varying delays

dx(t) = [−(
A + �A(t)

)
x(t) + (

W0 + �W0(t)
)

f
(
x(t)

) + (
W1 + �W1(t)

)
f
(
x
(
t − h(t)

))]
dt + σ

(
t, x(t), x

(
t − h(t)

))
dω(t), (6)

where ω(t) is m-dimensional Wiener Process (Brownian Motion) on (Ω,F , {Ft}t�0, P ), σ(t, x(t), x(t − h(t))) is assumed to satisfy the
following assumptions:

(C1) σ(t,0,0) = 0 and σ(t, x(t), x(t − h(t))) is locally Lipschitz continuous and satisfies the linear growth condition.
(C2) There exist constant real matrices G1 and G2 such that

Trace(σ T (
t, x(t), x

(
t − h(t)

))
σ

(
t, x(t), x

(
t − h(t)

))
�

∥∥G1x(t)
∥∥2 + ∥∥G2x

(
t − h(t)

)∥∥2
. (7)

Now, the system (6) can be written as:

dx(t) = [−Ax(t) + W0 f
(
x(t)

) + W1 f
(
x
(
t − h(t)

)) + Dp1(t))
]

dt + σ
(
t, x(t), x

(
t − h(t)

))
dω(t),

p1(t) = F (t)q1(t),

q1(t) = −E1x(t) + E2 f
(
x(t)

) + E3 f
(
x
(
t − h(t)

))
. (8)

The objective of this Letter is to find delay-dependent exponential stability criteria for system (6).
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Before deriving our main results, we state the following lemma.

Lemma 1. (See [19].) For any constant matrix M ∈ Rn×n, M = MT > 0, scalar γ > 0, vector function x : [0, γ ] → Rn such that the integrations
concerned are well defined, then( γ∫

0

x(s)ds

)T

M

( γ∫
0

x(s)ds

)
� γ

γ∫
0

xT (s)Mx(s)ds. (9)

In deriving our main results, Itô’s formula plays a key role in stability analysis of stochastic systems (see [20] for details).

3. Main results

In this section, we propose new delay-dependent stability criteria for uncertain stochastic neural networks with time-varying delays
described by Eq. (8). Before introducing the main result, the following notations are defined for simplicity:

y(t) = Ax(t) + W0 f
(
x(t)

) + W1 f
(
x
(
t − h(t)

)) + Dp1(t), g(t) = σ
(
t, x(t), x

(
t − h(t)

))
,

K p = diag
{
k+

1 , . . . ,k+
n

}
, Km = diag

{
k−

1 , . . . ,k−
n

}
,

ζ T
1 (t) = [

xT (t) xT (t − h(t)) xT (t − hU /2) xT (t − hU ) yT (t) f T (x(t)) f T (x(t − h(t))) pT
1 (t)

]
,

Σ1 = [Σ1(i, j)], i, j = 1, . . . ,8,

Σ1(1,1) = N11 + M11 + ε1 E T
1 E1 − P1 A − AT P T

1 − 2Km S1 K p +
3∑

i=1

ρi G
T
1 G1 − AT P T

3 , Σ1(1,2) = 0,

Σ1(1,3) = N12, Σ1(1,4) = 0, Σ1(1,5) = R1 − P1 − AT P T
2 − KmΛ + K p�,

Σ1(1,6) = M12 − ε1 E T
1 E2 + P1W0 + S1(Km + K p), Σ1(1,7) = −ε1 E T

1 E3 + P1W1, Σ1(1,8) = P1 D,

Σ1(2,2) = −(1 − hD)M11 − 2Km S2 K p +
3∑

i=1

ρi G
T
2 G2,

Σ1(2,3) = 0, Σ1(2,4) = 0, Σ1(2,5) = 0, Σ1(2,6) = 0, Σ1(2,7) = −(1 − hD)M12 + S2(Km + K p),

Σ1(2,8) = 0, Σ1(3,3) = N22 − N11, Σ1(3,4) = −N12, Σ1(3,5) = 0, Σ1(3,6) = 0, Σ1(3,7) = 0,

Σ1(3,8) = 0, Σ1(4,4) = −N22, Σ1(4,5) = 0, Σ1(4,6) = 0, Σ1(4,7) = 0, Σ1(4,8) = 0,

Σ1(5,5) = −P2 − P T
2 + (hU /2)(Q 1 + Q 2), Σ1(5,6) = P2W0 + Λ − � − P3, Σ1(5,7) = P2W1,

Σ1(5,8) = P2 D, Σ1(6,6) = M22 + P3W0 + W T
0 P T

3 , Σ1(6,7) = ε1 E T
2 E3 + P3W1,

Σ1(6,8) = −2S1 + P3 D, Σ1(7,7) = −(1 − hD)M22 + ε1 E T
3 E3 − 2S2, Σ1(7,8) = 0, Σ1(8,8) = −ε1 I,

Γ1 =
[

0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0

]
, Γ2 =

[
I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0

]
,

Ξ1 = Σ1 + (hU /2)−1Γ T
1

[ −Q 2 Q 2
� −Q 2

]
Γ1, Ξ2 = Σ1 + (hU /2)−1Γ T

2

[ −Q 1 Q 1
� −Q 1

]
Γ2,

Π1 = [
I −I 0 0 0 0 0 0

]
, Π2 = [

0 I −I 0 0 0 0 0
]
,

Π3 = [
0 −I I 0 0 0 0 0

]
, Π4 = [

0 I 0 −I 0 0 0 0
]
. (10)

Now, we have the following theorem.

Theorem 1. For given hU > 0, and hD , system (8) is exponentially stable in the mean square if there exist positive scalars ε1 , ρi (i = 1,2,3), positive

definite matrices R1 , Q 1 , Q 2 , N =
[

N11 N12
� N22

]
, M =

[
M11 M12
� M22

]
, positive diagonal matrices Si (i = 1,2) = diag{si1, . . . , sin}, Λ = diag{λ1, . . . , λn},

� = diag{δ1, . . . , δn} and any matrices Pi (i = 1,2,3) satisfying the following LMIs:

R1 � ρ1 I, (11)

Λ(K p − Km) � ρ2 I, (12)

�(K p − Km) � ρ3 I, (13)

Ξ1 + Π T
1 Φ1(0)Π1 + Π T

2 Φ2(0)Π2 < 0, (14)

Ξ1 + Π T
1 Φ1(hU /2)Π1 + Π T

2 Φ2(hU /2)Π2 < 0, (15)

Ξ2 + Π T
3 Φ3(hU /2)Π3 + Π T

4 Φ4(hU /2)Π4 < 0, (16)

Ξ2 + Π T
3 Φ3(hU )Π3 + Π T

4 Φ4(hU )Π4 < 0, (17)
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where Φ1(h(t)) = (−2(hU /2)−1 + (hU /2)−2h(t))Q 1 , Φ2(h(t)) = (−(hU /2)−2h(t) − (hU /2)−1)Q 1 , Φ3(h(t)) = (−(hU /2)−2(hU − h(t)) −
(hU /2)−1)Q 2 , Φ4(h(t)) = (−(hU /2)−1 − (hU /2)−2(h(t) − hU /2))Q 2 , and other notations are defined in (10).

Proof. From the definition y(t) and g(t) in (10), system (8) can be rewritten as:

dx(t) = y(t)dt + g(t)dω(t). (18)

For positive definite matrices R1, N , M, Q i (i = 1,2), and positive diagonal matrices Λ and �, let us consider the Lyapunov–Krasovskii
functional candidate:

V =
3∑

i=1

V i, (19)

where

V 1 = xT (t)R1x(t) + 2
n∑

i=1

(
λi

xi(t)∫
0

(
f i(s) − k−

i s
)

ds + δi

xi(t)∫
0

(
k+

i s − f i(s)
)

ds

)
+

t∫
t−hU /2

[
x(s)

x(s − hU /2)

]T

N
[

x(s)
x(s − hU /2)

]
ds,

V 2 =
t∫

t−h(t)

[
x(s)

f (x(s))

]T

M
[

x(s)
f (x(s))

]
ds,

V 3 =
t∫

t−hU /2

t∫
s

yT (u)Q 1 y(u)du ds +
t−hU /2∫
t−hU

t∫
s

yT (u)Q 2 y(u)du ds. (20)

With the mentioned V , the calculation of LV 1 can be obtained as

LV 1 = 2xT (t)R1 y(t) + trace
(

gT (t)R1 g(t)
) + 2

[
f
(
x(t)

) − Kmx(t)
]T

Λy(t) + 2
[

K p x(t) − f
(
x(t)

)]T
�y(t)

+ trace

(
gT (t)Λdiag

(
∂( f (x1) − k−

1 x1)

∂x1
, . . . ,

∂( f (xn) − k−
n xn)

∂xn

)
g(t)

)

+ trace

(
gT (t)�diag

(
∂(k+

1 x1 − f (x1))

∂x1
, . . . ,

∂(k+
n xn − f (xn))

∂xn

)
g(t)

)

+
[

x(t)
x(t − hU /2)

]T

N
[

x(t)
x(t − hU /2)

]
−

[
x(t − hU /2)

x(t − hU )

]T

N
[

x(t − hU /2)

x(t − hU )

]
, (21)

where L means the weak infinitesimal operator [20]. If the inequalities (11)–(13) hold, then

trace
(

gT (t)R1 g(t)
)
� ρ1

(
xT (t)G T

1 G1x(t) + xT (
t − h(t)

)
G T

2 G2x
(
t − h(t)

))
, (22)

trace

(
gT (t)Λdiag

(
∂( f (x1) − k−

1 x1)

∂x1
, . . . ,

∂( f (xn) − k−
n xn)

∂xn

)
g(t)

)

� trace
(

gT (t)Λ(K p − Km)g(t)
)
� ρ2

(
xT (t)G T

1 G1x(t) + xT (
t − h(t)

)
G T

2 G2x
(
t − h(t)

))
, (23)

trace

(
gT (t)�diag

(
∂(k+

1 x1 − f (x1))

∂x1
, . . . ,

∂(k+
n xn − f (xn))

∂xn

)
g(t)

)

� trace
(

gT (t)�(K p − Km)g(t)
)
� ρ3

(
xT (t)G T

1 G1x(t) + xT (
t − h(t)

)
G T

2 G2x
(
t − h(t)

))
. (24)

From the inequalities (22)–(24), an upper bound of LV 1 can be obtained as

LV 1 � 2xT (t)R1 y(t) +
3∑

i=1

ρi
(
xT (t)G T

1 G1x(t)x(t) + xT (
t − h(t)

)
G T

2 G2x
(
t − h(t)

))

+ 2
[

f
(
x(t)

) − Kmx(t)
]T

Λy(t) + 2
[

K p x(t) − f
(
x(t)

)]T
�y(t)

+
[

x(t)
x(t − hU /2)

]T

N
[

x(t)
x(t − hU /2)

]
−

[
x(t − hU /2)

x(t − hU )

]T

N
[

x(t − hU /2)

x(t − hU )

]
. (25)

Also, an upper bound of LV 2 can be obtained as

LV 2 �
[

x(t)
f (x(t))

]T

M
[

x(t)
f (x(t))

]
− (1 − hD)

[
x(t − h(t))

f (x(t − h(t)))

]T

M
[

x(t − h(t))
f (x(t − h(t)))

]
. (26)
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By calculating LV 3, we have

LV 3 = (hU /2)yT (t)(Q 1 + Q 2)y(t) −
t∫

t−hU /2

yT (s)Q 1 y(s)ds −
t−hU /2∫
t−hU

yT (s)Q 2 y(s)ds. (27)

Depending on whether the time-varying delay h(t) belongs the interval 0 � h(t) � hU /2 or hU /2 � h(t) � hU , different upper bounds of
the integral terms of (27) can be obtained as two cases:

Case I: 0 � h(t) � hU /2.
For this condition, the term − ∫ t

t−hU /2 yT (s)Q 1 y(s)ds can be divided into two ones as:

−
t∫

t−hU /2

yT (s)Q 1 y(s)ds = −
t∫

t−h(t)

yT (s)Q 1 y(s)ds −
t−h(t)∫

t−hU /2

yT (s)Q 1 y(s)ds. (28)

When time delay belongs to 0 � h(t) � hU /2, from [20], the following two equations hold

x(t) − x
(
t − h(t)

) −
t∫

t−h(t)

y(s)ds −
t∫

t−h(t)

g(s)dω(s) = 0, (29)

x
(
t − h(t)

) − x(t − hU /2) −
t−h(t)∫

t−hU /2

y(s)ds −
t−h(t)∫

t−hU /2

g(s)dω(s) = 0. (30)

Note that

−1 = −(hU /2)−1h(t) − (
1 − (hU /2)−1h(t)

)
. (31)

By utilizing Eqs. (29) and (31), the inequality −hU /2 � −h(t), and Lemma 1, an upper bound of the integral term − ∫ t
t−h(t) yT (s)Q 1 y(s)ds

can be obtained as

−
t∫

t−h(t)

yT (s)Q 1 y(s)ds = −(hU /2)−1h(t)

t∫
t−h(t)

yT (s)Q 1 y(s)ds − (hU /2)−1(1 − (hU /2)−1h(t)
)
(hU /2)

t∫
t−h(t)

yT (s)Q 1 y(s)ds

� −(hU /2)−1h(t)

t∫
t−h(t)

yT (s)Q 1 y(s)ds − (hU /2)−1(1 − (hU /2)−1h(t)
)(

h(t)
) t∫
t−h(t)

yT (s)Q 1 y(s)ds

�
( t∫

t−h(t)

y(s)ds

)T

Φ1
(
h(t)

)( t∫
t−h(t)

y(s)ds

)

= (
x(t) − x

(
t − h(t)

))T
Φ1

(
h(t)

)(
x(t) − x

(
t − h(t)

)) − 2
(
x(t) − x

(
t − h(t)

))T
Φ1

(
h(t)

) t∫
t−h(t)

g(s)dω(s)

+
( t∫

t−h(t)

g(s)dω(s)

)T

Φ1
(
h(t)

)( t∫
t−h(t)

g(s)dω(s)

)
, (32)

where Φ1(h(t)) are defined in Theorem 1.
By using the similar method introduced above, an upper bound of the term − ∫ t−h(t)

t−hU /2 yT (s)Q 1 y(s)ds can be estimated

−
t−h(t)∫

t−hU /2

yT (s)Q 1 y(s)ds �
(
x
(
t − h(t)

) − x(t − hU /2)
)T

Φ2
(
h(t)

)(
x
(
t − h(t)

) − x(t − hU /2)
)

− 2
(
x
(
t − h(t)

) − x(t − hU /2)
)T

Φ2
(
h(t)

) t−h(t)∫
t−hU /2

g(s)dω(s)

+
( t−h(t)∫

t−hU /2

g(s)dω(s)

)T

Φ2
(
h(t)

)( t−h(t)∫
t−hU /2

g(s)dω(s)

)
, (33)

where Φ2(h(t)) are defined in Theorem 1.
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The other integral term − ∫ t−hU /2
t−hU

yT (s)Q 2 y(s)ds can be estimated as

−
t−hU /2∫
t−hU

yT (s)Q 2 y(s)ds � −(hU /2)−1(x(t − hU /2) − x(t − hU )
)T

Q 2
(
x(t − hU /2) − x(t − hU )

)

+ 2(hU /2)−1(x(t − hU /2) − x(t − hU )
)T

Q 2

( t−hU /2∫
t−hU

g(s)dω(s)

)

− (hU /2)−1

( t−hU /2∫
t−hU

g(s)dω(s)

)T

Q 2

( t−hU /2∫
t−hU

g(s)dω(s)

)
, (34)

where the equation x(t − hU /2) − x(t − hU ) − ∫ t−hU /2
t−hU

y(s)ds − ∫ t−hU /2
t−hU

g(s)dω(s) = 0 is utilized.
In order to derive less conservative results, we add the following zero equation with free-weighting matrices Pi (i = 1,2,3) to be

chosen as

0 = 2
[
xT (t)P1 + yT (t)P2 + f T (

x(t)
)

P3
][−y(t) + Ax(t) + Adx

(
t − h(t)

) + Dp1(t)
]
. (35)

Note that Eq. (5) means[
f j

(
x j(t)

) − k−
j x j(t)

][
f j

(
x j(t)

) − k+
j x j(t)

]
� 0 ( j = 1, . . . ,n), (36)[

f j
(
x j

(
t − h(t)

)) − k−
j x j

(
t − h(t)

)][
f j

(
x j

(
t − h(t)

)) − k+
j x j

(
t − h(t)

)]
� 0 ( j = 1, . . . ,n). (37)

From two inequalities (36) and (37), for any positive diagonal matrices S1 = diag{s1i, . . . , s1n}, and S2 = diag{s2i, . . . , s2n}, the following
inequality holds

0 � −2
n∑

j=1

s1 j
[

f j
(
x j(t)

) − k−
j x j(t)

][
f j

(
x j(t)

) − k+
j x j(t)

]

− 2
n∑

j=1

s2 j
[

f j
(
x j

(
t − h(t)

)) − k−
j x j

(
t − h(t)

)][
f j

(
x j

(
t − h(t)

)) − k+
j x j

(
t − h(t)

)]
= −2xT (t)Km S1 K px(t) + 2xT (t)(Km + K p)S1 f

(
x(t)

) − 2 f T (
x(t)

)
S1 f

(
x(t)

) − 2xT (
t − h(t)

)
Km S2 K p x

(
t − h(t)

)
+ 2xT (

t − h(t)
)
(Km + K p)S2 f

(
x
(
t − h(t)

)) − 2 f T (
x
(
t − h(t)

))
S2 f

(
x
(
t − h(t)

))
. (38)

From (2) and (8), we have pT
1 (t)p1(t) � qT

1 (t)q1(t). Then, there exists a positive scalar ε1 satisfying the following inequality

ε1
[
qT

1 (t)q1(t) − pT
1 (t)p1(t)

]
� 0. (39)

From the condition 0 � h(t) � hU /2, note that

( t∫
t−h(t)

g(s)dω(s)

)T

Φ1
(
h(t)

)( t∫
t−h(t)

g(s)dω(s)

)
< 0,

( t−h(t)∫
t−hU /2

g(s)dω(s)

)T

Φ2
(
h(t)

)( t−h(t)∫
t−hU /2

g(s)dω(s)

)
< 0. (40)

From (18)–(40) and by applying S-procedure [18], the LV = ∑3
i=1 LV i has a new upper bound as

LV � ζ T
1 (t)Ω1

(
h(t)

)
ζ1(t) + ξ1

(
dω(t)

)
, (41)

where ζ1(t), Ξ1, Π1, and Π2 are defined in (10), Ω1(h(t)) = Ξ1 + Π T
1 Φ1(h(t))Π1 + Π T

2 Φ2(h(t))Π2, and

ξ1
(
dω(t)

) = −2
(
x(t) − x

(
t − h(t)

))T
Φ1

(
h(t)

) t∫
t−h(t)

g(s)dω(s) − 2
(
x
(
t − h(t)

) − x(t − hU /2)
)T

Φ2
(
h(t)

) t−h(t)∫
t−hU /2

g(s)dω(s)

+ 2(hU /2)−1(x(t − hU /2) − x(t − hU )
)T

Q 2

( t−hU /2∫
t−hU

g(s)dω(s)

)
. (42)

Since Φ1(h(t)) and Φ2(h(t)) are convex combination of the matrix Q 1 on h(t), Ω1(h(t)) < 0 for 0 � h(t) � hU /2 can be handled by the two
LMIs Ω1(0) < 0 and Ω1(hU /2) < 0, which are equivalent to the LMIs (14) and (15). Note that the mathematical expectation of ξ1(dω(t))
is zero [21]. Therefore, if the LMIs (11)–(15) hold, there exists a positive scalar γ1 > 0 satisfying

E{LV } � −γ1E
∣∣x(t)∣∣2

. (43)
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Case II: hU /2 � h(t) � hU .
For this condition, an upper bound of the integral term − ∫ t

t−hU /2 yT (s)Q 1 y(s)ds can be obtained as

−
t∫

t−hU /2

yT (s)Q 1 y(s)ds � −(hU /2)−1(x(t) − x(t − hU /2)
)T

Q 1
(
x(t) − x(t − hU /2)

)

+ 2(hU /2)−1(x(t) − x(t − hU /2)
)T

Q 1

( t∫
t−hU /2

g(s)dω(s)

)

− (hU /2)−1

( t∫
t−hU /2

g(s)dω(s)

)T

Q 1

( t∫
t−hU /2

g(s)dω(s)

)
, (44)

where x(t) − x(t − hU /2) − ∫ t
t−hU /2 y(s)ds − ∫ t

t−hU /2 g(s)dω(s) = 0 is utilized in (44).
Note that

−1 = −(hU /2)−1(hU − hU /2) = −(hU /2)−1(hU − h(t)
) − (hU /2)−1(h(t) − hU /2

)
. (45)

When h(t) belongs to the interval hU /2 � h(t) � hU , the following equations hold:

x(t − hU /2) − x
(
t − h(t)

) −
t−hU /2∫

t−h(t)

y(s)ds −
t−hU /2∫

t−h(t)

g(s)dω(s) = 0, (46)

x
(
t − h(t)

) − x(t − hU ) −
t−h(t)∫

t−hU

y(s)ds −
t−h(t)∫

t−hU

g(s)dω(s) = 0. (47)

Using Eqs. (45)–(47), inequality hU /2 � h(t) � hU , and Lemma 1, an upper bound of the integral term − ∫ t−hU /2
t−hU

yT (s)Q 2 y(s)ds can be
obtained

−
t−hU /2∫
t−hU

yT (s)Q 2 y(s)ds = −
t−hU /2∫

t−h(t)

yT (s)Q 2 y(s)ds −
t−h(t)∫

t−hU

yT (s)Q 2 y(s)ds

�
[
x(t − hU /2) − x(t − h(t)

]T
Φ3

(
h(t)

)[
x(t − hU /2) − x(t − h(t)

]
+ [

x
(
t − h(t)

) − x(t − hU )
]T

Φ4
(
h(t)

)[
x
(
t − h(t)

) − x(t − hU )
] + ξ̂2

(
dω(t)

)

+
( t−hU /2∫

t−h(t)

g(s)dω(s)

)T

Φ3
(
h(t)

)( t−hU /2∫
t−h(t)

g(s)dω(s)

)

+
( t−h(t)∫

t−hU

g(s)dω(s)

)T

Φ4
(
h(t)

)( t−h(t)∫
t−hU

g(s)dω(s)

)
, (48)

where

ξ̂2
(
dω(t)

) = −2
(
x(t − hU /2) − x

(
t − h(t)

))T
Φ3

(
h(t)

) t−hU /2∫
t−h(t)

g(s)dω(s)

− 2
(
x
(
t − h(t)

) − x(t − hU )
)T

Φ4
(
h(t)

) t−h(t)∫
t−hU

g(s)dω(s). (49)

From (18)–(27), (35)–(39), (44)–(49), and by applying S-procedure [18], the LV = ∑3
i=1 LV i has a new upper bound as

LV � ζ T
1 (t)Ω2

(
h(t)

)
ζ1(t) + ξ2

(
dω(t)

)
, (50)

where ξ2(dω(t)) = ξ̂2(dω(t)) + 2(hU /2)−1(x(t) − x(t − hU /2))T Q 1(
∫ t

t−hU /2 g(s)dω(s)), Ω2(h(t)) = Ξ2 + Π T
3 Φ3(h(t))Π3 + Π T

4 Φ4(h(t))Π4,
and Ξ2, Π3, and Π4 are defined in (10).

Since Φ3(h(t)) and Φ4(h(t)) are convex combination of the matrix Q 2 on h(t), Ω2(h(t)) < 0 for hU /2 � h(t) � hU can be handled
by the two LMIs Ω2(hU /2) < 0 and Ω2(hU ) < 0, which are equivalent to the LMIs (16) and (17). Therefore, if the LMIs (11)–(13) and
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(16)–(17) hold, there exists a positive scalar γ2 such that

E{LV } � −γ2E
∣∣x(t)∣∣2

. (51)

From (43) and (51), if the LMIs (11)–(17) hold, then we have

E{LV } � −min(γ1, γ2)E
∣∣x(t)∣∣2

. (52)

By using similar method in the proof of Theorem 1 in [14], we can prove that the obtained inequality (52) indicates that the uncertain
stochastic neural network (8) with 0 � h(t) � hU is exponentially stable in the mean square. This completes our proof. �

For a special case, if σ(t, x(t), x(t − h(t))) is a linear function, that is,

σ
(
t, x(t), x

(
t − h(t)

)) = (
Hx(t) + �H(t)

)
x(t) + (

Hd + �Hd(t)
)
x
(
t − h(t)

)
, (53)

where [ �H(t) �Hd(t) ] = D F2(t) [ E4 E5 ], and F T
2 (t)F2(t) � I , then system (1) can be written as:

dx(t) = [−Ax(t) + W0 f
(
x(t)

) + W1 f
(
x
(
t − h(t)

)) + Dp1(t)
]

dt + [
Hx(t) + Hdx

(
t − h(t)

) + Dp2(t)
]

dω(t),

p1(t) = D F1(t)q1(t), p2(t) = D F2(t)q2(t),

q1(t) = −E1x(t) + E2 f
(
x(t)

) + E3 f
(
x
(
t − h(t)

))
, q2(t) = E4x(t) + E5x

(
t − h(t)

)
. (54)

For the above system, we can also obtain a delay-dependent stability criterion using similar methods presented in the proof of Theorem 1,
which can be obtained as Corollary 1. We also introduce the following notations for simplicity:

y(t) = Ax(t) + W0 f
(
x(t)

) + W1 f
(
x
(
t − h(t)

)) + Dp1(t), g(t) = Hx(t) + Hdx
(
t − h(t)

) + Dp2(t),

ζ T
2 (t) = [

xT (t) xT (t − h(t)) xT (t − hU /2) xT (t − hU ) yT (t) gT (t) f T (x(t)) f T (x(t − h(t))) pT
1 (t) pT

2 (t)
]
,

Σ2 = [Σ2(i, j)], i, j = 1, . . . ,10,

Σ2(1,1) = N11 + M11 + ε1 E T
1 E1 + ε2 E T

4 E4 − P1 A − AT P T
1 + P3 H + H T P T

3 − 2Km S1 K p,

Σ2(1,2) = ε2 E T
4 E5 + P3 Hd, Σ2(1,3) = N12, Σ2(1,4) = 0, Σ2(1,5) = R1 − P1 − AT P T

2 − KmΛ + K p�,

Σ2(1,6) = −P3 + H T P T
4 , Σ2(1,7) = M12 − ε1 E T

1 E2 + P1W0 + S1(Km + K p) − AT P T
5 − H T P T

6 ,

Σ2(1,8) = −ε1 E T
1 E3 + P1W1, Σ2(1,9) = P1 D, Σ2(1,10) = P3 D,

Σ2(2,2) = −(1 − hD)M11 + ε2 E T
5 E5 − 2Km S2 K p, Σ2(2,3) = 0, Σ2(2,4) = 0, Σ2(2,5) = 0,

Σ2(2,6) = H T
d P T

4 , Σ2(2,7) = −H T
d P T

6 , Σ2(2,8) = −(1 − hD)M12 + S2(Km + K p), Σ2(2,9) = 0,

Σ2(2,10) = 0, Σ2(3,3) = N22 − N11, Σ2(3,4) = −N12, Σ2(3,5) = 0, Σ2(3,6) = 0, Σ2(3,7) = 0,

Σ2(3,8) = 0, Σ2(3,9) = 0, Σ2(3,10) = 0, Σ2(4,4) = −N22, Σ2(4,5) = 0, Σ2(4,6) = 0, Σ2(4,7) = 0,

Σ2(4,8) = 0, Σ2(4,9) = 0, Σ2(4,10) = 0, Σ2(5,5) = −P2 − P T
2 + (hU /2)(Q 1 + Q 2), Σ2(5,6) = 0,

Σ2(5,7) = P2W0 + Λ − � − P T
5 , Σ2(5,8) = P2W1, Σ2(5,9) = P2 D, Σ2(5,10) = 0,

Σ2(6,6) = R1 − P4 − P T
4 + (Λ + �)(K p − Km), Σ2(6,7) = −P T

6 , Σ2(6,8) = 0, Σ2(6,9) = 0,

Σ2(6,10) = P4 D, Σ2(7,7) = M22 − 2S1 + P5W0 + W T
0 P T

5 , Σ2(7,8) = ε1 E T
2 E3 + P5W1,

Σ2(7,9) = P5 D, Σ2(7,10) = P6 D, Σ2(8,8) = −(1 − hD)M22 + ε1 E T
3 E3 − 2S2,

Σ2(8,9) = 0, Σ2(8,10) = 0, Σ2(9,9) = −ε1 I, Σ2(9,10) = 0, Σ2(10,10) = −ε2 I,

Γ3 =
[

0 0 I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0

]
, Γ4 =

[
I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0

]
,

Ξ3 = Σ2 + (hU /2)−1Γ T
3

[ −Q 2 Q 2
� −Q 2

]
Γ3, Ξ4 = Σ2 + (hU /2)−1Γ T

4

[ −Q 1 Q 1
� −Q 1

]
Γ4,

Π5 = [
I −I 0 0 0 0 0 0 0 0

]
, Π6 = [

0 I −I 0 0 0 0 0 0 0
]
,

Π7 = [
0 −I I 0 0 0 0 0 0 0

]
, Π8 = [

0 I 0 −I 0 0 0 0 0 0
]
. (55)

Now, we have the following corollary.

Corollary 1. For given hU > 0, and hD , system (54) is exponentially stable in the mean square if there exist positive scalars ε1 and ε2 , positive definite
matrices R1 , Q 1 , Q 2 , N , M, positive diagonal matrices Si (i = 1,2) = diag{si1, . . . , sin}, Λ = diag{λ1, . . . , λn}, � = diag{δ1, . . . , δn} and any
matrices Pi (i = 1, . . . ,6) satisfying the following LMIs:
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Ξ3 + Π T
5 Φ1(0)Π5 + Π T

6 Φ2(0)Π6 < 0, (56)

Ξ3 + Π T
5 Φ1(hU /2)Π5 + Π T

6 Φ2(hU /2)Π6 < 0, (57)

Ξ4 + Π T
7 Φ3(hU /2)Π7 + Π T

8 Φ4(hU /2)Π8 < 0, (58)

Ξ4 + Π T
7 Φ3(hU )Π7 + Π T

8 Φ4(hU )Π8 < 0. (59)

Proof. Let us consider the same Lyapunov–Krasovskii’s functional (19). With the following additional zero equation

0 = 2
[
xT (t)P4 + gT (t)P5 + f T (

x(t)
)

P6
][

Hx(t) + Hdx
(
t − h(t)

) + Dp2(t)
]
, (60)

augmentation vector ζ2(t), and the similar method in the proof of Theorem 1, we can easily show that if the LMIs (56)–(59) hold, then
system (54) is exponentially stable in the mean square. This completes our proof. �
Remark 1. Since dω(t) in (54) is one-dimensional Wiener Process, the following equation holds:

trace
(

gT (t)R1 g(t)
) = gT (t)R1 g(t). (61)

In Corollary 1, g(t) was chosen as an augmentation variable, which may improve the feasible region of stability for the system (54).

Remark 2. When M11 = M12 = M22 = 0, Theorem 1 and Corollary 1 do not include the information of time-derivative of h(t).

Remark 3. In [14–16], free-weighting matrices technique are utilized when obtaining upper bounds of integral terms obtained by cal-
culating the stochastic differential of Lyapunov–Krasovskii’s functionals to reduce the conservatism or increase the feasible of stability
criteria. However, the large employing of decision variables makes the stability criteria more complex and the computational burden and
time-consuming of stability criteria will be increased. Recently, in the field of delay-dependent stability analysis of dynamic system with
time delays, a discretization scheme [22] of the delay was proposed to improve the feasible region of stability criteria. This method uti-
lizes a Lyapunov–Krasovskii’s functional which employs redundant state of differential equations shifted delay in time by a fraction of
the time delay. However, if delay fraction number increases, then the computational burden is large and the solving of the concerned
LMIs much time-consuming. In this Letter, the delay fraction number is chosen as two for the tradeoff between time-consuming and
improved results. To reduce LMI variables, we do not use any free-weighting matrix in obtaining upper bounds of integral terms such as
− ∫ t

t−hU /2 yT (s)Q 1 y(s)ds and − ∫ t−hU /2
t−hU

yT (s)Q 2 y(s)ds at each subintervals 0 � h(t) < hU /2 and hU /2 � h(t) � hU , which is different from
the method of [14–16]. Through numerical examples, we will show that Theorem 1 and Corollary 1 with less number of LMI variables can
provide an improved result compared with the recent ones in [14–16].

Remark 4. To treat the integral term which include g(t) as shown at Eq. (20) in [14] and Eq. (26)–(27) in [15], the double integral form
of Lyapunov–Krasovskii’s functional which include g(t) were used. However, the proposed Theorem 1 and Corollary 1 do not include this
form of Lyapunov–Krasovskii’s functional. This consideration may lead to an improved results of the proposed methods.

4. Numerical examples

Example 1. Consider the uncertain stochastic neural networks (17) studied in [16]:

A = diag{1.5,0.5,2.3}, W0 =
⎡
⎣ 0.3 −0.19 0.3

−0.15 0.2 0.36
−0.17 0.29 −0.3

⎤
⎦ , W1 =

⎡
⎣ 0.19 −0.13 0.2

0.26 0.09 0.1
0.02 −0.15 0.07

⎤
⎦ ,

G1 = G2 = 0.1I, D = 0.1I, E1 = E2 = E3 = I. (62)

When K p = diag{1,1,1}, Km = diag{−0.5,−0.5,−0.5} and hD = 0.5, the maximum delay bound by Theorem 1 in [16] was hU = 2.2471,
However, by applying Theorem 1 to the above system with the same K p , Km and hD , one can see that the system (62) is exponentially
stable in the mean square for any hU > 0. When hD is unknown, our maximum delay bound is obtained as hU = 3.5304 by Theorem 1. For
the case of K p = diag{1.2,0.5,1.3} and Km = diag{0,0,0}, when hD = 0.85 and unknown, the obtained delay bounds were hU = 9.6876
and 2.3879, respectively in [16]. However, our results when hD = 0.85 and unknown are hU = 19.9261 and 4.6364, respectively. Further-
more, note that the number of decision variable of Theorem 1 is 103 while the one of [16, Theorem 1] was 422. From these results, our
criterion with less decision variables than those of [16] provides larger delay bounds than the results of [16].

Example 2. Consider the following uncertain stochastic neural networks with time-varying delays:

dx(t) = [−(
A + �A(t)

)
x(t) + (

W0 + �W0(t)
)

f
(
x(t)

) + (
W1 + �W1(t)

)
f
(
x
(
t − h(t)

))]
dt + [

Hx(t) + Hdx
(
t − h(t)

)]
dω(t)

(63)

where A = diag{4,5}, K p = diag{0.5,0.5}, Km = diag{0,0} and

W0 =
[

0.4 −0.7
0.1 0

]
, W1 =

[ −0.2 0.6
0.5 −0.1

]
, H0 = 0.5I, H1 =

[
0 −0.5

−0.5 0

]
,

D = [
0.1 −0.1

]T
, E1 = [

0.2 0.3
]
, E2 = [

0.2 −0.3
]
, E3 = −E1.
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Table 1
Delay bounds hU with different conditions hD (Example 2).

hD is known hD is unknown

hD hU hU

Zhang et al. [16] � 0.90 ∞ 0.6520
Corollary 1 � 0.94 ∞ 1.8693

Table 2
Delay bounds hU with different conditions hD (Example 3).

hD = 0.5 hD is unknown

hU Num. of variables hU Num. of variables

Chen et al. [14] 0.264 95 0.1962 89
Yu et al. [15] 0.273 122 0.209 116
Corollary 1 0.284 63 0.2101 53

When the information of time-derivative is unknown, Corollary 1 with the 53 decision variables provides that the maximum delay bound
for stability in the mean square is hU = 1.8788. However, in [15], the delay bound by Theorem 2 with 116 decision variables was
hU = 0.8269. This means that Corollary 1 provides improved delay bounds in spite of using less number of decision variables than those
of [15]. For the case of K p = diag{0.5,0.5}, Km = diag{−0.5,−0.5}, the comparison of our results with the ones of [16] are listed in
Table 1, which shows Corollary 1 improves the feasible region of stability criterion.

Example 3. Consider the following stochastic system [14]:

dx(t) = [−Ax(t) + W0 f
(
x(t)

) + W1 f
(
x
(
t − h(t)

))]
dt + [

�H(t)x(t) + �Hd(t)
]

dω(t) (64)

where A = I , D = I , E1 = 0, E2 = 0, E3 = 0, E4 = 0.01I , E5 = 0.02I and

W0 =
[ −1 2

1 −2

]
, W1 = 2W0, H0 = 0, H1 = 0.

When K p = diag{1,1}, Km = diag{0,0}, the obtained delay bounds by Corollary 1 are listed in Table 2 with the recent ones in [14,15].
From Table 2, one can see that Corollary 1 with less number of decision variable than the ones of [14,15] provides larger delay bounds for
different condition of hD .
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