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Abstract— This paper considers the guaranteed cost synchro-
nization problem for a class of chaotic systems. Using a convex
representation of error dynamics, state and output feedback
LPV (Linear Parameter Varying) controllers are proposed. The
criteria for the existence of the controllers are derived in terms
of LMI (Linear Matrix Inequality). Numerical examples show
the effectiveness of the proposed method.

I. INTRODUCTION

Chaotic systems have attracted much attention because

many fundamental characteristics appear in chaotic systems,

such as excessive sensitivity to initial conditions and fractal

properties of the motion in phase space. Since Pecora and

Carroll [1] presented the pioneer work for synchronization

of two identical chaotic systems, chaos synchronization has

received great attention because of its various applications

(e.g., biology, economics, signal generator design, secure

communications and so on). In the literature, there are

various methods which achieve chaotic synchronization,

for example, observer based control [2][3], back-stepping

design technique [4][5], variable structure control [6][7] and

so on.

With the development of convex optimization technology,

linear feedback control methods based on LMIs are also

proposed [8][9]. Linear feedback control scheme is widely

used in real world because it has simple configuration

and its implementation is easy. Recently, guaranteed cost

control for chaotic synchronization with input constraint is

presented in [10]. Considering boundedness of nonlinearity

as polytopic uncertainties, the paper [10] derived stability

criterion for chaotic synchronization in terms of LMIs.

However, gain-scheduling approach based on LPV system

representation can give more flexibility to design controllers

[11][12][13]. When the parameters are measurable with
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known bounds, improvement of performance, (e.g., lower

cost, less conservative condition), can be obtained by

introducing a parameter dependent controller.

This paper proposes guaranteed cost control methods

for chaotic synchronization, which give an advantage

of providing an upper bound on a given performance

index. Using a convex representation for error dynamics,

parameter independent and dependent state feedback LPV

controllers with input constraint are proposed. Moreover,

an output feedback dynamic LPV controller is proposed

as well. The criteria for existence of the controllers are

given in terms of LMIs, which can be easily solved by

solving a convex optimization problem. Numerical examples

are given to show the effectiveness of the proposed methods.

II. PROBLEM STATEMENT

Consider the following master-slave synchronization

scheme of chaotic systems with subscripts m for master and

s for slave :

Master

{

ẋm(t) = Axm(t) + f(xm),
ym(t) = Hxm(t),

(1)

Slave

{

ẋs(t) = Axs(t) + f(xs) − Bu(t),
ys(t) = Hxs(t),

(2)

where x ∈ R
n is the state vector, y ∈ R

q is the output vector,

A ∈ R
n×n, B ∈ R

n×p and H ∈ R
q×n are constant matrices,

u ∈ R
p is a control input vector, f(x) is a nonlinear function

satisfying Lipschitz condition.

Define synchronization error e(t) = xm(t) − xs(t) to get

error dynamic system :

ė = Ae(t) + f(xm) − f(xs) + Bu(t). (3)

For a class of chaotic system (e.g., the Chua’s circuit), the

nonlinearity f(x) has following properties [10] :

f(xm) − f(xs) = L(w)(xm − xs), (4)

where L(w) is a bounded matrix which depends on a time-

varying parameter wi as

L(w) =
r

∑

i=1

wiLi, (5)

αi ≤ wi ≤ βi, wm ≤
r

∑

i=1

wi ≤ wM . (6)

Using the nonlinear property (4), the error dynamics (3)

can be rewritten as following :
{

ė(t) = A(w)e(t) + Bu(t),
ye(t) = He(t),

(7)
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where A(w) = A + L(w) and ye = ym − ys.

We consider the controller design for both cases, state

feedback and output feedback.

• Case I ) State feedback

The state feedback controller is of the form

u(t) = K(w)e(t), (8)

where

K(w) = K0 +

r
∑

i=1

wiKi. (9)

To consider input constraints which inevitably exist in

practice, the designed controller have to satisfy follow-

ing condition :

|ui(t)| < ūi, i = 1, . . . , p. (10)

• Case II ) Output feedback

The output feedback controller is of the form

{

ζ̇(t) = Ac(w)ζ(t) + Bc(w)ye(t),
u(t) = Ccζ(t) + Dcye(t),

(11)

where

Ac(w) = Ac0 +
r

∑

i=1

wiAci, (12)

Bc(w) = Bc0 +
r

∑

i=1

wiBci, (13)

and ζ(t) is the controller state vector.

Finally, for the performance criterion of the proposed con-

troller, we introduce a performance index as following :

J(t) =

∫

∞

t

eT (τ)Qe(τ) + uT (τ)Ru(τ)dτ. (14)

III. GUARANTEED COST CONTROLLER DESIGN

In this section, we present guaranteed cost controllers for

chaotic synchronization.

A. State feedback controller

With the state feedback controller (8), the resulting closed-

loop error dynamic system has the following form :

ė(t) = (A(w)e(t) + BK(w))e(t). (15)

Theorem 1: The closed-loop error dynamic system (15)

is globally asymptotically stable and the performance index

(14) is bounded by γ for any initial states e(0) if there exist

positive symmetric matrices X , S, Si, T , Ti and matrices

K̄0, K̄i with appropriate dimension satisfying the following

LMIs





























Ψ ΨT
1

ΨT
2

· · · ΨT
r K̄T

0
X

Ψ1 Λ1 ∆T
12

· · · ∆T
1r K̄T

1
0

Ψ2 ∆12 Λ2

. . .
...

...
...

...
...

. . .
. . .

...
...

...

Ψr ∆1r · · · · · · Λr K̄T
r

...

K̄0 K̄1 · · · · · · K̄r −γR−1
...

X 0 · · · · · · · · · · · · −γQ−1





























< 0,

(16)

[

I eT (0)
⋆ X

]

> 0, (17)





















Θ ΘT
1

ΘT
2

· · · ΘT
r K̄T

0

Θ1 Λ̄1 ∆̄T
12

· · · ∆̄T
1r K̄T

1

Θ2 ∆̄12 Λ̄2

. . .
...

...
...

...
. . .

. . .
...

...

Θr ∆̄1r · · · · · · Λ̄r K̄T
1

K̄0 K̄1 · · · · · · K̄r I





















> 0, (18)

where

Ψ = A0X + XAT
0

+ BK̄0 + K̄T
0

BT

−2
r

∑

i=1

αiSiβi − 2wMSwm, (19)

Ψi = XAT
i + K̄T

i BT

+(αi + βi)Si + (wM + wm)S, (20)

Θ = ū2X + 2
r

∑

i=1

αiTiβi + 2wMTwm, (21)

Θi = −(αi + βi)Ti − (wM + wm)T (22)

Λi = −2Si − 2S, (23)

Λ̄i = 2Ti + 2T, (24)

∆ij = −2S. (25)

∆̄ij = 2T. (26)

Proof : Define a Lyapunov function as

V (t) = eT (t)Pe(t), (27)

and the time derivative of V (t) is given by

V̇ (t) = eT (t)((A(w) + BK(w))T P

+ P (A(w) + BK(w)))e(t). (28)

Considering the performance index (14), the closed-loop (15)

is said to be guaranteed cost by the proposed controller (8)

if there exists a positive symmetric matrix P satisfying the

following condition :

(A(w) + BK(w))T P + P (A(w) + BK(w))

+Q + K(w)T RK(w) < 0. (29)
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Let P/γ , X−1, then the inequality (29) is equivalent to

X(A(w) + BK(w))T + (A(w) + BK(w))X

+X
Q

γ
X + XK(w)T RK(w)X < 0. (30)

Defining K(w)X , K̄(w), (30) can be rewritten as

A0X + BK̄0 + XAT
0

+ K̄T
0

BT + XQX

+
r

∑

i=1

wi{AiX + BK̄i + XAT
i + K̄T

i BT }

+(K̄0 +
r

∑

i=1

wiK̄i)
T R(K̄0 +

r
∑

i=1

wiK̄i) < 0. (31)

The constraints of the parameters (6) mean that there exist

positive symmetric matrices Si and S such that

(wi − αi)Si(wi − βi) < 0, (32)

(
r

∑

i=1

wi − wm)S(
r

∑

i=1

wi − wM ) < 0. (33)

Considering (32)-(33) by applying S-procedure lemma,

and using Schur complement, the condition (31) can be

considered as a quadratic form (16) with the vector
[

I w1I · · · wrI
]T

.

If the inequality (16)-(17) holds, the performance index will

be bounded by γ, because

[

I eT (0)
⋆ X

]

> 0 ⇐⇒ γ > eT (0)Pe(0), (34)

J(t) ≤ J(0) < V (0) = eT (0)Pe(0) < γ, (35)

and the guaranteed cost is obtained by minimizing γ.

Next, we consider input constraints (10) as following :

ū2

i > u2

i (t) = eT (t)KT (w)EiEiK(w)e(t), (36)

where Ei is the ith row of the identity matrix Ip×p.

Consider the invariant ellipsoid (34), then

ū2

i − eT (t)KT (w)EiEiK(w)e(t)

+λ(eT (t)Pe(t) − γ) > 0, (37)

where λ > 0 is a Lagrange multiplier. By substituting λ =
ū2

i /γ, the inequality (37) is equivalent to

λP − KT (w)K(w) > 0. (38)

Pre and post multiplying X, (39) becomes

ū2

i X − K̄T (w)K̄(w) > 0. (39)

Considering (32)-(33) and using Schur complement, the

inequality (39) is equivalent to (18) with the vector
[

I w1I · · · wrI
]T

. This completes the proof. �

B. Output feedback controller

With the output feedback controller (11), the resulting

closed-loop error dynamic system has the following form

:

˙̄x(t) = Aclx̄(t), (40)

where

x̄(t) =
[

eT (t) ζT (t)
]T

, (41)

Acl =

[

A(w) + BDcH BCc

Bc(w) Ac(w)

]

. (42)

Theorem 2: The closed-loop error dynamic system (40)

is globally asymptotically stable and the performance index

(14) is bounded by γ for any initial states e(0) if there exist

matrices X , X̄ , M , N0, Ni, G0, Gi, Dc, S and Si with

appropriate dimension satisfying the following LMIs





























Φ ΦT
1

ΦT
2

· · · ΦT
r ΓT

R ΓT
Q

Φ1 Λ1 ∆12 · · · ∆2r 0 0

Φ2 ∆T
12

Λ2

. . .
...

...
...

...
...

. . .
. . .

...
...

...

Φr ∆T
1r · · · · · · Λr

...
...

ΓR 0 · · · · · · · · · −R−1
...

ΓQ 0 · · · · · · · · · · · · −Q−1





























< 0,

(43)
[

γ eT (0)X
⋆ X

]

> 0, (44)

[

X̄ I
⋆ X

]

> 0, (45)

where

Φ =

[

A0X̄ + X̄T AT
0

+ BM + MT BT

⋆

A0 + BDcH + NT
0

XA0 + AT
0
X + G0H + HT GT

0

]

−2
r

∑

i=1

αiSiβi − 2wMSwm, (46)

Φi =

[

X̄AT
i NT

i

AT
i AT

i X + HT GT
i

]

(47)

+(αi + βi)Si + (wM + wm)S, (48)

ΓR =
[

M DcH
]

, (49)

ΓQ =
[

X̄ I
]

, (50)

Λi = −2Si − 2S, (51)

∆ij = −2S. (52)

Proof : Define a Lyapunov function

V (t) = x̄T Px̄, (53)

and consider the performance index (14). The closed-loop

(40) is said to be guaranteed cost by the proposed controller
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(11) if there exists a positive symmetric matrix P satisfying

the following condition :

AT
clP + PAcl +

[

I
0

]

Q
[

I 0
]

+

[

HT DT
c

CT
c

]

R
[

DcH Cc

]

< 0. (54)

Let P =

»

X Y

Y
T

Z

–

and P
−1

=

»

X̄ Ȳ

Ȳ
T

Z̄

–

, then the equality

P
−1

P = I yields

Ȳ Y T = I − X̄X. (55)

Define

Υ1 =

[

X̄ I
Ȳ T 0

]

, Υ2 =

[

I X
0 Y T

]

, (56)

then it follows that

PΥ1 = Υ2, ΥT
1
PΥ1 = ΥT

1
Υ2 =

[

X̄ I
I X

]

. (57)

Therefore, if the inequality (45) is satisfied, P > 0 is

guaranteed.

Using congruence transform with the matrix

»

Υ1 0

0 I

–

, the

inequality (54) can be rewritten as
[

A(w)X̄ + BM + X̄AT (w) + MT BT

⋆

A(w) + BDcH + NT (w)
XA(w) + G(w)H + A(w)T X + HT G(w)T

]

+

[

X̄
I

]

Q
[

X̄ I
]

+

[

MT

HT DT
c

]

R
[

M DcH
]

< 0, (58)

where

M = DcHX̄ + CcȲ
T , (59)

N(w) = XA(w)X̄ + XBDcHX̄ + Y Bc(w)HX̄

+XBCcȲ
T + Y Ac(w)Ȳ T , (60)

G(w) = XBDc + Y Bc(w). (61)

Analogously to Theorem 1, considering (32)-(33) by apply-

ing S-procedure lemma, and using Schur complement, the

condition (58) can be considered as a quadratic form (43)

with the vector
[

I w1I · · · wrI
]T

.

If the inequality (43) holds, the performance index will be

bounded by

J(t) < V (0) =
[

eT (0) 0
]

P

[

e(0)
0

]

< γ. (62)

Using Schur complement, (62) can be rewritten as (44)

and the guaranteed cost is obtained by minimizing γ. This

completes the proof. �

IV. NUMERICAL EXAMPLES

In this section, we present two examples to show the

effectiveness of our results.

Example 1. Consider the following Chua’s circuits in [10] :






ẋ = a(y − x − f(x)),
ẏ = x − y + z,
ż = −by,

(63)

with the nonlinear characteristic

f(x) = m1x +
1

2
(m0 − m1)(|x + c| − |x − c|), (64)

where a = 9.78, b = 14.97, m0 = −1.31, m1 = −0.75 and

c = 1. The nonlinearity f(x) has the property of

f(xm) − f(xs) = w





−a 0 0
0 0 0
0 0 0









xm − xs

ym − ys

zm − zs



 (65)

where m0 < w < m1. Then, the closed-loop error dynamic

system (8) is described by

A(w) =





−a a 0
1 −1 1
0 −b 0



 + w





−a 0 0
0 0 0
0 0 0



 , (66)

B =
[

1 0 0
]T

. (67)

The performance index is given by Q = I and R = I . The

initial conditions are xm(t) =
[

0.001 0.001 0.001
]T

,

xs(t) =
[

1.001 1.001 1.001
]T

.

Results obtained from Theorem 1 are compared with

ones in [10] and listed in Table I. The performance index

from Theorem 1 is much lower than one in [10] and the

stability condition corresponding to input constraint ū is

less conservative. Fig. 1 and Fig. 2 show the stable response

of error eT (t) =
[

eT
1
(t) eT

2
(t) eT

3
(t)

]T
and the input

which is limited in ū.

Example 2. Consider the hyper-chaotic system which com-

bines two Chua’s circuits shown in [14][15] :































ẋ1 = a(x2 − f(x1)) + u1(t),
ẋ2 = x1 − x2 + x3,
ẋ3 = −bx2,
ẋ4 = a(x5 − f(x4)) + K(x4 − x1)) + u2(t),
ẋ5 = x4 − x5 + x6,
ẋ6 = −bx5,

y =
[

xT
1
(t) xT

4
(t)

]T

with the nonlinear characteristic

f(x) = m1x +
1

2
(m0 − m1)(|x + c| − |x − c|),

where m0 = −1/7, m1 = 2/7, a = 9, b = 14.28 and
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K = 0.01. In this case, we define

A0 =

















−am1 a 0 0 0 0
1 −1 1 0 0 0
0 −b 0 0 0 0

−K 0 0 K − am1 a 0
0 0 0 1 −1 0
0 0 0 0 −b 0

















,

A1 =

















−a(m0 − m1) 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

A2 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −a(m0 − m1) 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

then the parameters are bounded as 0 < wi < 1 and

0 <
∑

2

i=1
wi < 2. The performance index is also given

by Q = I and R = I . The initial conditions are xm(t) =
[

0.001 0.001 0.001 1.001 1.001 1.001
]T

, xs(t) =
[

1.001 1.001 1.001 0.001 0.001 0.001
]T

.

Using the output signal, the designed output feedback con-

troller (11) is derived by Theorem 2. Due to the limitation

of the length of this paper, we provide a part of the feasible

solution.

Ac0 =

















−6.6551 −2.8298 −2.3307
61.3014 −11.0199 0.0610

−133.0630 16.4107 −5.8295
−186.2993 23.3737 1.3759
−686.7579 84.5922 −212.9004
260.2748 −39.7076 −848.7878

0.8879 −1.3623 0.5288
−3.7500 4.0690 −1.0896
9.2998 −12.2051 3.7332
10.2628 −17.9354 7.2634
232.3817 −76.2339 15.3359
686.9336 −0.9964 −83.1643

















.

Fig. 3 and Fig. 4 show the stable response of error and

the input with the performance index γ = 201.6208. The

performance index can be reduced by γ∗ = 141.5886.

V. CONCLUSION

This paper proposed guaranteed cost controllers for a class

of chaos synchronization. By a convex representation of error

dynamics, we regarded the synchronization problem as a

LPV problem. This approach gives more flexibility to design

controllers when it comes to reducing performance index or

conservatism. We designed state and output feedback LPV

controllers and the results were given in numerical examples.
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Fig. 3. The response of the error in Example 2.
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TABLE I

COMPARED RESULTS IN EXAMPLE 1.

Control gain when ū = 12

Theorem 1 K0 =
ˆ

0.5305 −4.9998 −2.3911
˜

K1 =
ˆ

3.6029 −0.8766 −1.3714
˜

[10] K =
ˆ

3.6956 −7.5851 −0.3453
˜

Performance index γ∗

Theorem 1 160.9349

[10] 365.5516

Minimum allowable ū

Theorem 1 10.516

[10] 11.293
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Fig. 4. The response of the inputs in Example 2.
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