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Abstract

This article addresses control for the chaos synchronization of hyperchaotic Chen system with five uncertain param-

eters. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical

hyperchaotic Chen systems asymptotically synchronized. Finally, a numerical simulations is presented to show the effec-

tiveness of the proposed chaos synchronization scheme.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Since Pecora and Carroll [1] introduced a method to synchronization two identical chaotic systems with different

initial conditions, chaos synchronization have attracted a great deal of attention from various fields during the last three

decades [2–13]. The idea of synchronization is to use the output of the master system to control the slave system so that

the output of the response system follows the output of the master system asymptotically. Many methods and tech-

niques for handling chaos control and synchronization have been developed, such as PC method [1], OGY method

[3], feedback approach [6,7], adaptive method [14], time-delay feedback approach [5], and backstepping design tech-

nique [10], etc. On the other hand, when the chaotic systems have some uncertain parameters, it is generally difficult

to control the system. In this case, it is well known that the adaptive control scheme is an effective method for the syn-

chronization. In this regard, the adaptive feedback synchronization for several chaotic systems has been investigated by

Wang et al. [14], Han et al. [16], Elabbasy et al. [17], Lu et al. [15], and Park [18].

Recently, because the presence of more than positive Lyapunov exponent clearly improves security by generating

more complex dynamics, synchronization schemes of hyperchaotic systems have been investigated [19–21].

In this article, we consider the problem of chaos synchronization of hyperchaotic Chen system with uncertain

parameters. For chaotic synchronization of the uncertain hyperchaotic system, a class of novel adaptive control scheme

is proposed. Then, chaos synchronization of the system is proved by the Lyapunov stability theory.

Throughout the article, diag{� � �} denotes the diagonal matrix. kÆk denotes Euclidean norm of given vector. The

organization of this article is as follows. In Section 2, the problem statement and master-slave synchronization scheme
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are presented for the hyperchaotic Chen system. In Section 3, we provide a numerical example to demonstrate the effec-

tiveness of the proposed method. Finally concluding remark is given.
2. Chaos synchronization of hyperchaotic Chen system

The hyperchaotic Chen system [21] is given by
_x ¼ aðy � xÞ þ w;

_y ¼ dx� xzþ cy;

_z ¼ xy � bz;

_w ¼ yzþ rw;

8>>><
>>>:

ð1Þ
where x, y, z, and w are state variables, and a, b, c, d and r are the real constants.

When a = 35, b = 3, c = 12, d = 7, and 0 6 r 6 0.085, the system (1) is chaotic; when a = 35, b = 3, c = 124, d = 7, and

0.085 < r 6 0.798, the system (1) is hyperchaotic; when a = 35, b = 3, c = 12, d = 7, and 0.798 < r 6 0.90, the system (1)

is periodic [20]. For the projections of hyperchaotic attractor of the system, see the papers [20,21]. Also, it is shown that

when a = 35, b = 3, c = 12, d = 7, and 0.085 < r 6 0.798, the hyperchaotic Chen system (1) only has one equilibrium

Oð0:0:0:0Þ, and is a forced dissipative system, which implies that the solutions of the system are bounded as t !1.

Now, we assume that we have two hyperchaotic Chen systems where the master system with the subscript m drives

the slave system having identical equations denoted by the subscript s. For the systems (1), the master (or drive) and

slave (or response) systems are defined below, respectively,
_xm ¼ aðym � xmÞ þ wm;

_ym ¼ dxm � xmzm þ cym;

_zm ¼ xmym � bzm;

_wm ¼ ymzm þ rwm;

8>>><
>>>:

ð2Þ
and
_xs ¼ a1ðys � xsÞ þ ws þ u1;

_ys ¼ d1xs � xszs þ c1ys þ u2;

_zs ¼ xsys � b1zs þ u3;

_ws ¼ yszs þ r1ws þ u4;

8>>><
>>>:

ð3Þ
where a1, b1, c1, d1 and r1 are parameters of the slave system which needs to be estimated, and u1, u2, u3 and u4 are the

nonlinear controller such that two hyperchaotic systems can be synchronized.

Subtracting Eq. (2) from Eq. (3) yields error dynamical system between Eqs. (2) and (3)
_e1ðtÞ ¼ a1ðys � xsÞ � aðym � xmÞ þ e4 þ u1;

_e2ðtÞ ¼ d1xs � dxm � xszs þ xmzm þ c1ys � cym þ u2;

_e3ðtÞ ¼ xsys � xmym � b1zs þ bzm þ u3;

_e4ðtÞ ¼ yszs � ymzm þ r1ws � rwm þ u4;

8>>><
>>>:

ð4Þ
where
e1ðtÞ ¼ xsðtÞ � xmðtÞ;
e2ðtÞ ¼ ysðtÞ � ymðtÞ;
e3ðtÞ ¼ zsðtÞ � zmðtÞ;
e4ðtÞ ¼ wsðtÞ � wmðtÞ:

8>>><
>>>:

ð5Þ
Here, our goal is to make synchronization between two hyperchaotic Chen systems by using adaptive control scheme

ui, i = 1,2,3,4 when the parameter of the drive system is unknown and different with those of the response system, i.e.,
lim
t!1

keðtÞk ¼ 0;
where e = [e1 e2 e3 e4]
T.

For two hyperchaotic Chen systems without control (ui = 0, i = 1,2,3,4), if the initial condition

(xm(0),ym(0),zm(0),wm(0)) 5 (xs(0),ys(0),zs(0),ws(0)), the trajectories of the two identical systems will quickly separate
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each other and become irrelevant. However, for the two-controlled hyperchaotic Chen systems, the two systems will

approach synchronization for any initial condition by appropriate control gain. For this end, we propose the following

control law for the system (3):
u1 ¼ �ðk1 � a1Þe1 � ða1 þ d1 � zsÞe2 � e4;

u2 ¼ �ðk2 þ c1Þe2 � e1e3;

u3 ¼ �ðk3 � b1Þe3 þ yme1;

u4 ¼ �ðk4 � r1Þe4 � yse3 � zme2;

ð6Þ
where ki are the positive scalars, and the update rule for five unknown parameters a, b, c, d and r:
_a1 ¼ �ðym � xmÞe1;
_b1 ¼ zme3;

_c1 ¼ �yme2;
_d1 ¼ �xme2;

_r1 ¼ �wme4:

ð7Þ
Then, we have the following main result.

Theorem. For any initial conditions, the two systems (2) and (3) are globally asymptotically synchronized by the control

law (6) and the update law (7).

Proof. Choose the following Lyapunov candidate:
V ¼ 1
2
e21 þ e22 þ e23 þ e2a þ e2b þ e2c þ e2d þ e2r
� �

; ð8Þ
where ea = a1 � a, eb = b1 � b, ec = c1 � c, ed = d1 � d, and er = r1 � r.
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Fig. 1. State trajectories of master and slave systems.
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The differential of the Lyapunov function along the trajectory of error system (4) is
dV
dt

¼ _e1e1 þ _e2e2 þ _e3e3 þ _eaea þ _ebeb þ _ecec þ _eded þ _erer

¼ e1 a1ðys � xsÞ � aðym � xmÞ þ e4 þ u1½ � þ e2 d1xs � dxm � xszs þ xmzm þ c1ys � cym þ u2½ �
þ e3 xsys � xmym � b1zs þ bzm þ u3½ � þ e4 yszs � ymzm þ r1ws � rwm þ u4½ � þ _eaða1 � aÞ þ _ebðb1 � bÞ
þ _ecðc1 � cÞ þ _edðd1 � dÞ þ _erðr1 � rÞ: ð9Þ
Here, note that
� xszs þ xmzm ¼ �zse1 � xme3;

xsys � xmym ¼ xse2 � yme1;

yszs � ymzm ¼ yse3 þ zme2:

ð10Þ
Substituting Eqs. (7) and (10) into Eq. (9) give that
dV
dt

¼ �a1e21 þ ða1 þ d1 � zsÞe1e2 þ e1e4 þ e1u1 þ c1e22 þ e2u2 � yme1e3 � b1e23 þ e3u3 þ yse3e4 þ zme2e4

þ r1e24 þ e4u4 þ e1e2e3: ð11Þ
Again, substituting Eq. (6) into Eq. (11) gives that
dV
dt

¼ �k1e
2
1 � k2e

2
2 � k3e

2
3 � k4e

2
4 ¼ �eTPe; ð12Þ
where P = diag{k1,k2,k3,k4}.

Since _V is negative semidefinite, we cannot immediately obtain that the origin of error system (5) is asymptotically

stable. In fact, as _V 6 0, then e1; e2; e3; e4 2 L1 and ea; eb; ec; ed ; er 2 L1. From the error system (4), we have

_e1; _e2; _e3; _e4 2 L1. Since _V ¼ �eTPe, then we have
Z t

0

kminðP Þkek2 dt 6
Z t

0

eTPedt 6
Z t

0

� _V dt ¼ V ð0Þ � V ðtÞ 6 V ð0Þ;
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Fig. 2. Synchronization errors, e1, e2, e3, e4 with time t.
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Fig. 3. Changing parameters a1, b1, c1, d1, r1 of response system with time t.
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where kmin(P) is the minimum eigenvalue of positive-definite matrix P. Thus e1; e2; e3; e4 2 L2. According to the Bar-

balat�s lemma, we have e1(t),e2(t),e3(t),e4(t)! 0 as t !1, i.e., limt!1ke(t)k = 0. Therefore, the slave system (3) syn-

chronize the master system (2) by the controller (6). This completes the proof. h
3. Numerical example

In this section, to verify and demonstrate the effectiveness of the proposed method, we discuss the simulation result

for hyperchaotic Chen system. In the numerical simulations, the fourth-order Runge-Kutta method is used to solve the

systems with time step size 0.001.

For this numerical simulation, we assume that the initial condition, (xm(0),ym(0),zm(0),wm(0)) = (3,�4,2,2), and

(xs(0),ys(0),zs(0),ws(0)) = (�3,4,�2,�2) and control gains, (k1,k2,k3,k4) = (7,5,5,5) are employed. Hence the error sys-

tem has the initial values e1(0) = �3, e2(0) = 8, e3(0) = �4, and e4(0) = �4. The five unknown parameters are chosen as

a = 35, b = 3, c = 12, d = 7 and r = 0.5 in simulations so that the system (1) exhibits a hyperchaotic behavior. Synchro-

nization of the systems (2) and (3) via adaptive control law (6) and (7) with the initial estimated parameters a1(0) = 10,

b1(0) = 0.5, c1(0) = 7, d1(0) = 10 and r1(0) = 0.1 are shown in Figs. 1–3. Figs. 1 and 2 display the state response and syn-

chronization errors of systems (2), (3). Fig. 3 shows that the estimates a1(t), b1(t), c1(t), d1(t), r1(t) of the unknown

parameters converges to a = 35, b = 3, c = 12, d = 7 and r = 0.5 as t! 1.
4. Concluding remark

In this article, we investigate the synchronization of controlled hyperchaotic Chen chaotic systems with five uncer-

tain parameters. We have proposed a novel adaptive nonlinear control scheme for asymptotic chaos synchronization
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using the Lyapunov stability theory. Finally, a numerical simulation is provided to show the effectiveness of the method

proposed in this work.
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[12] Lü J, Zhou T, Zhang S. Chaos synchronization between linearly coupled chaotic systems. Chaos, Solitons & Fractals

2002;14:529–41.

[13] Park JH. Stability criterion for synchronization of linearly coupled unified chaotic systems. Chaos, Solitons & Fractals

2005;23:1319–25.

[14] Wang Y, Guan ZH, Wang HO. Feedback an adaptive control for the synchronization of Chen system via a single variable. Phys

Lett A 2003;312:34–40.
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