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ON GLOBAL EXPONENTIAL STABILITY FOR CELLULAR

NEURAL NETWORKS WITH TIME-VARYING DELAYS

O.M. KWON, JU H. PARK∗ , AND S.M. LEE

Abstract. In this paper, we consider the global exponential stability
of cellular neural networks with time-varying delays. Based on the Lya-

punov function method and convex optimization approach, a novel delay-
dependent criterion of the system is derived in terms of LMI (linear ma-

trix inequality). In order to solve effectively the LMI convex optimization
problem, the interior point algorithm is utilized in this work. Two nu-

merical examples are given to show the effectiveness of our results.
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1. Introduction

Cellular neural networks (CNNs) have been investigated extensively during
the recent decades because CNN can be applied in various fields such as pattern
recognition, associative memories, signal processing, fixed-point computation
and etc. For more details, see [1]-[5] and references therein. On the other
hand, time-delay is a natural phenomenon in many applications due to the
finite switching speed of amplifiers in electronic networks or finite speed for
signal propagation in biological networks. Moreover the delay is frequently a
source of instability and oscillation. Therefore, many researchers have focused
on the study for the stability analysis of delayed cellular neural networks (DC-
NNs) ([6]-[22]). In determining the speed of neural computation for real-time
computation, the property of exponential convergence rate is often used to de-
rive the fast behaviors of a system. Hence, the global exponential stability for
DCNNs has also been investigated in very recent years ([16]-[22]).
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In this paper, we study the global exponential stability analysis of DC-
NNs. The described DCNNs have time-varying delays, which is more general
cases than time-invariant ones. By employing a suitable Lyapunov-Krasovskii
functionals method, a new exponential stability criterion is proposed. The
derived criterion is delay-dependent one which is less conservative than delay-
independent one when the size of delays is small [23]. Also, the proposed
stability criterion is of the form of LMIs which can be solved efficiently by
using the interior-point algorithms [25]. In this work, the popular model trans-
formation technique, which leads an additional dynamics, is not used. Instead,
in order to derive a less conservative results, note that a new integral inequality
lemma is proposed. Finally, two numerical examples are included to show that
our results are less conservative than those of the existing ones.
Notation: Rn is the n-dimensional Euclidean space, Rm×n denotes the set of
m × n real matrix. ‖ · ‖ refers to the Euclidean vector norm and the induced
matrix norm. For symmetric matrices X and Y , the notation X > Y (respec-
tively, X ≥ Y ) means that the matrix X − Y is positive definite, (respectively,
nonnegative). diag{· · ·} denotes the block diagonal matrix. ? represents the
elements below the main diagonal of a symmetric matrix. λM (·) and λm(·)
mean the largest and smallest eigenvalue of given square matrix, respectively.

2. Problem Statements

Consider the following neural networks with time-varying delays:

ẏi(t) = −aiyi(t) +

n∑

j=1

wijfj(yj(t)) +

n∑

j=1

w1
ijfj(yj(t − h(t))) + bi, (1)

or equivalently

ẏ(t) = −Ay(t) + Wf(y(t)) + W1f(y(t − h(t))) + b, (2)

where i = 1, ..., n, n denotes the number of neurons in a neural network,

y(t) = [y1(t), ..., yn(t)]
T
∈ Rn is the neuron state vector, f(y(t)) ∈ Rn denotes

the activation functions, f(y(t−h(t))) ∈ Rn, b = [b1, ..., bn]T means a constant
input vector, A = diag{ai} is a positive diagonal matrix, W = (wij)n×n and
W1 = (w1

ij)n×n are the interconnection matrices representing the weight coef-

ficients of the neurons. The delay, h(t), is a time-varying continuous function
that satisfies

0 ≤ h(t) ≤ h̄, ḣ(t) ≤ µ, (3)

where h̄ and µ are positive constants.
The activation functions, fi(yi(t)), i = 1, ..., n, are assumed to be nondecreas-
ing, bounded and globally Lipschiz; that is,

0 ≤
fi(ξ1) − fj(ξ2)

ξ1 − ξ2
≤ li, ξi, ξj ∈ R, ξ1 6= ξ2, i = 1, ..., n. (4)
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Note that by using the Brouwer’s fixed-point theorem [6], it can be easily proven
that there exists at least one equilibrium point for Eq. (2).
For simplicity, in stability analysis of the system (2), the equilibrium point

y∗ = [y∗1 , ..., y∗n]
T

is shifted to the origin by utilizing the transformation x(·) =
y(·) − y∗, which leads the system (2) to the following form:

ẋ(t) = −Ax(t) + Wg(x(t)) + W1g(x(t − h(t)) (5)

where x(t) = [x1(t), ..., xn(t)]
T

∈ Rn is the state vector of the transformed

system, g(x(t)) = [g1(x(t)), ..., gn(x(t))]
T

and gj(xj(t)) = fj(xj(t)+y∗j )−fj(y
∗
j )

with gj(0) = 0(j = 1, ..., n). It is noted from (4) that gj(·) satisfies the following
condition:

0 ≤
gj(ξj)

ξj

≤ lj , ∀ξj 6= 0, j = 1, ..., n (6)

which is equivalent to gj(ξj) [gj(ξj) − ljξj ] ≤ 0, gj(0) = 0, j = 1, ..., n.

Here, as a mathematical tool for our analysis, the following zero equation is
introduce:

Gx(t)− Gx(t − h(t)) − G

∫ t

t−h(t)

ẋ(s)ds = 0.

Then, we can represent the system (2) as

ẋ(t) = (−A + G)x(t) − Gx(t − h(t)) − G

∫ t

t−h(t)

ẋ(s)ds

+Wg(x(t)) + W1g(x(t − h(t)) (7)

where G ∈ Rn×n will be chosen later.

Before deriving our main results, we state the following facts, definition
and lemma.

Fact 1. (Schur complement) Given constant symmetric matrices
∑

1,
∑

2,
∑

3

where
∑

1 =
∑T

1 and 0 <
∑

2 =
∑T

2 , then
∑

1 +
∑T

3

∑−1
2

∑
3 < 0 if and only

if [ ∑
1

∑T

3∑
3 −

∑
2

]
< 0, or

[
−
∑

2

∑
3∑T

3

∑
1

]
< 0.

Fact 2. For any real vectors a, b and any matrix Q > 0 with appropriate
dimensions, it follows that:

2aT b ≤ aT Qa + bT Q−1b.

Definition 1. For system defined by (1), if there exist the positive constants

k and γ > 1 such that

‖x(t)‖ ≤ γe−kt sup
−h̄≤θ≤0

‖x(θ)‖ ∀t > 0,
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then, the trivial solution of the system (1) is exponentially stable where k is
called the convergence rate (or degree) of exponential stability.

Lemma 1. For a positive matrix Q > 0, any matrices Fi(i = 1, ..., 6), and
scalar h̄ ≥ 0, the following inequality holds:

−

∫ t

t−h(t)

ẋT (s)Qẋ(s) ≤ ζT (t)F̃ ζ(t) + h̄ζ(t)T F T Q−1Fζ(t)

where ζT =



xT xT (t − h(t))

(∫ t

t−h(t)

ẋ(s)ds

)T

ẋT gT (x) gT (x(t − h(t)))




T

,

F =
[

F1 F2 F3 F4 F5 F6

]
, and

F̃ =




0 0 F T
1 0 0 0

? 0 F T
2 0 0 0

? ? F T
3 + F3 F4 F5 F6

? ? ? 0 0 0
? ? ? ? 0 0
? ? ? ? ? 0




. (8)

Proof. Utilizing Fact 2, we have

−

∫ t

t−h(t)

ẋT (s)Qẋ(s)ds ≤ 2

(∫ t

t−h(t)

ẋ(s)ds

)T

Fζ +

∫ t

t−h(t)

ζT F T Q−1Fζds

≤ 2ζT ĪF ζ + h̄ζT F TQ−1Fζ = ζT F̃ ζ + h̄ζT F TQ−1Fζ.

where Ī = [0 0 I 0 0 0]T . �

Lemma 2. [24] Suppose that (4) holds, then
∫ u

v

[gi(s) − gi(v)]ds ≤ [u − v][gi(u) − gi(v)], i = 1, 2, ..., n.

3. Main results

In this section, we propose a new exponential stability criterion for neural
networks with time-varying delays (7). Now, we have the following main results.

Theorem 1. For given 0 ≤ h(t) ≤ h̄, ḣ(t) ≤ µ and L = diag{l1, l2, ..., ln},
the equilibrium point of (1) is globally exponentially stable with convergence
rate k if there exist positive definite matrices P, Ri(i = 1, 2, 3) and positive
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diagonal matrices D = diag{d1, d2, ..., dn}, Hi(i = 1, 2) and any matrices Y1,
Fi, Mi, Ni (i = 1, ..., 6) satisfying the following LMI:




Σ11 Σ12 Σ13 Σ14 Σ15 Σ16 h̄F T
1

? Σ22 Σ23 Σ24 Σ25 Σ26 h̄F T
2

? ? Σ33 Σ34 Σ35 Σ36 h̄F T
3

? ? ? Σ44 Σ45 Σ46 h̄F T
4

? ? ? ? Σ55 Σ56 h̄F T
5

? ? ? ? ? Σ66 h̄F T
6

? ? ? ? ? ? −h̄e2kh̄R3




< 0, (9)

where

Σ11 = 2kP − PA− AT P + Y1 + Y T
1 + R2 − N1A − AT NT

1 + M1 + MT
1 ,

Σ12 = −Y1 − AT NT
2 − M1 + MT

2 ,

Σ13 = −Y1 + e−2kh̄F T
1 − AT NT

3 − M1 + MT
3 ,

Σ14 = −N1 − AT NT
4 + MT

4 ,

Σ15 = PW + 2kD + LH1 + N1W − AT NT
5 + MT

5 ,

Σ16 = PW1 + N1W − AT NT
6 + MT

6 ,

Σ22 = −(1 − µ)e−2kh̄R2 − M2 − MT
2 ,

Σ23 = e−2kh̄F T
2 − M2 − MT

3 , Σ24 = −N2 − MT
4 ,

Σ25 = N2W − MT
5 , Σ26 = LH2 + N2W1 − MT

6 ,

Σ33 = e−2kh̄F3 + e−2kh̄F T
3 − M3 − MT

3 ,

Σ34 = e−2kh̄F4 − N3 − MT
4 , Σ35 = e−2kh̄F5 + N3W − MT

5 ,

Σ36 = e−2kh̄F6 + N3W1 − MT
6 , Σ44 = h̄R3 − N4 − NT

4 ,

Σ45 = D + N4W − NT
5 , Σ46 = N4W1 − NT

6 ,

Σ55 = R1 − 2H1 + N5W + WT NT
5 , Σ56 = N5W1 + WT NT

6 ,

Σ66 = −(1 − µ)e−2kh̄R1 − 2H2 + N6W1 + WT
1 NT

6 .

Proof. For positive definite matrices P , D = diag{d1, ..., dn}, and Ri(i =
1, ..., 3), let us consider the Lyapunov-Krasovskii functional candidate:

V = V1 + V2 + V3 + V4 + V5 (10)

where

V1 = e2ktxT (t)Px(t), V2 = 2

n∑

i=1

die
2kt

∫ xi(t)

0

gi(s)ds,

V3 =

∫ t

t−h(t)

e2ksgT (x(s))R1g(x(s))ds, V4 =

∫ t

t−h(t)

e2ksxT (s)R2x(s)ds,

V5 =

∫ t

t−h̄

∫ t

s

e2kuẋT (u)R3ẋ(u)duds.
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From Eq. (7), differentiating V1 leads to

V̇1 = e2kt

[
xT (2kP − PA − AT P + PG + GTP )x − 2xT PGx(t− h(t))

−2xT PG

∫ t

t−h(t)

ẋ(s)ds + 2xTPWg(x) + 2xTPW1g(x(t − h(t)))

]
. (11)

By differentiating V2, V3 and V4, respectively, we have

V̇2 = 4k

n∑

i=1

die
2kt

∫ xi(t)

0

gi(s)ds + 2

n∑

i=1

die
2ktgi(xi(t))ẋi(t)

≤ e2kt
[
4kgT (x(t))Dx(t) + 2gT (x(t))Dẋ(t)

]
,

V̇3 ≤ e2kt
[
gT (x)R1g(x) − (1 − µ)e−2kh̄gT (x(t − h(t)))R1g(x(t − h(t)))

]

V̇4 = e2ktxT R2x − (1 − ḣ(t))e2k(t−h(t))xT (t − h(t))R2x(t − h(t))

≤ e2kt
[
xT R2x − (1 − µ)e−2kh̄xT (t − h(t))R2x(t − h(t))

]
, (12)

where Lemma 2 was utilized in obtaining an upper bound of V̇2.
The time-derivatives of V5 is obtained as

V̇5 = e2kt

[
h̄ẋT (t)R3ẋ(t) −

∫ t

t−h̄

e2k(s−t)ẋT (s)R3ẋ(s)ds

]

≤ e2kt

[
h̄ẋT (t)R3ẋ(t) − e−2kh̄

∫ t

t−h̄

ẋT (s)R3ẋ(s)ds

]
. (13)

Here, by utilizing Lemma 1, we obtain

−

∫ t

t−h̄

ẋT (s)R3ẋ(s)ds ≤ −

∫ t

t−h(t)

ẋT (s)R3ẋ(s)ds

≤ ζT F̃ ζ + h̄ζT F TR−1
3 Fζ, (14)

where ζ is defined in (8).
Thus, we have a new upper bound of V5 as follows:

V̇5 ≤ e2kt
[
h̄ẋT (t)R3ẋ(t) + e−2kh̄ζT F̃ ζ + e−2kh̄h̄ζT F T R−1

3 Fζ
]
. (15)

As a tool of deriving a less conservative stability criterion, we add the following
two zero equation with any matrices Ni(i = 1, ..., 6) and Mi(i = 1, ..., 6) to be
chosen as

2e2kt
[
xTN1 + xT (t − h(t))N2 +

(∫ t

t−h(t)

ẋ(s)ds

)T

N3 + ẋT N4 + gT (x)N5

+gT (x(t − h(t)))N6

]
× [−ẋ + Ax + Wg(x(t)) + W1g(x(t − h(t)))] = 0,
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2e2kt
[
xT M1 + xT (t − h(t))M2 +

(∫ t

t−h(t)

ẋ(s)ds

)T

M3 + ẋT M4 + gT (x)

×M5 + gT (x(t − h(t)))N6

]
×

[
x − x(t − h(t)) −

∫ t

t−h(t)

ẋ(s)ds

]
= 0. (16)

This can be represented as

e2ktζT (Ξ1 + Ξ2)ζ(t) = 0, (17)

where

Ξ1 =




−N1A − ANT
1 −AT NT

2 −AT NT
3 −N1 − AT NT

4

? 0 0 −N2

? ? 0 −N3

? ? ? −N4 − NT
4

? ? ? ?

? ? ? ?

N1W − AT NT
5 N1W1 − AT NT

6

N2W N2W1

N3W N3W1

N4W − NT
5 N4W1 − NT

6

N5W + WT NT
5 N5W1 + WNT

6

? N6W1 + WT
1 NT

6




,

and

Ξ2 =




M1 + MT
1 −M1 + MT

2 −M1 + MT
3 MT

4 MT
5 MT

6

? −M2 − MT
2 −M2 − MT

3 −MT
4 −MT

5 MT
6

? ? −M3 − MT
3 −MT

4 −MT
5 MT

6

? ? ? 0 0 0
? ? ? ? 0 0
? ? ? ? ? 0




.

Eq. (6) means that

gj(xj(t))
[
gj(xj(t) − ljxj(t)

]
≤ 0 (j = 1, ..., n), (18)

and

gj(xj(t − h(t)))
[
gj(xj(t − h(t)) − ljxj(t − h(t))

]
≤ 0 (j = 1, ..., n). (19)

From the above two inequalities (18) and (19), for any diagonal positive matri-
ces H1 = diag{h11, ..., h1n} and H2 = diag{h21, ..., h2n}, the following inequal-
ities hold

0 ≤ −2e2kt

n∑

j=1

h1jgj(xj(t))
[
gj(xj(t)) − ljxj(t)

]
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−2e2kt

n∑

j=1

h2jgj(xj(t − h(t))) [gj(xj(t − h(t))) − ljxj(t − h(t))]

= 2e2kt
[
xT LH1g(x) − gT (x)H1g(x) + xT (t − h(t))LH2g(x(t − h(t)))

−gT (x(t − h(t)))H2g(x(t − h(t)))
]
. (20)

From (11)-(15) and adding (17) and (20), the time derivative of V has a new
upper bound as

V̇ (t) ≤ e2kt
[
xT (2kP − PA − AT P + PG + GT P )x − 2xT PGx(t− h(t))

−2xTPG

∫ t

t−h(t)

ẋ(s)ds + 2xT PWg(x) + 2xT PW1g(x(t − h(t)))
]

+e2kt
[
4kgT (x)Dx + 2gT (x)Dẋ(t)

]
+ xT (t − h(t))LH2g(x(t − h(t)))

+e2kt
[
gT (x)R1g(x) − (1 − µ)e−2kh̄gT (x(t − h(t)))R1g(x(t − h(t)))

]

+e2kt
[
xT R2x − (1 − µ)e−2kh̄xT (t − h(t))R2x(t − h(t))

]

+e2kt
[
h̄ẋT R3ẋ + e−2kh̄ζT F̃ ζ + e−2kh̄h̄ζT F T R−1

3 Fζ
]

+e2ktζT (Ξ1 + Ξ2)ζ(t) + 2e2kt
[
xT (t)LH1g(x(t)) − gT (x)H1g(x)

−gT (x(t − h(t)))H2g(x(t − h(t)))
]

= e2ktζT
(
Ω + e−2kh̄h̄ζT F T R−1

3 F
)
ζ, (21)

where

Ω =




(1, 1) (1, 2) (1, 3) Σ14 Σ15 Σ16

? Σ22 Σ23 Σ24 Σ25 Σ26

? ? Σ33 Σ34 Σ35 Σ36

? ? ? Σ44 Σ45 Σ46

? ? ? ? Σ55 Σ56

? ? ? ? ? Σ66




and

(1, 1) = 2kP + P (−A + G) + (−A + G)T P + R2 − N1A − AT NT
1 + M1 + MT

1 ,

(1, 2) = −PG− AT NT
2 − M1 + MT

2 ,

(1, 3) = −PG + e−2kh̄F T
1 − AT NT

3 − M1 + MT
3 .

By defining Y1 = PG and using Fact 1, the inequality Ω+e−2kh̄h̄F T R−1
3 F <

0, which guarantees the stability of the system (1) by the Lyapunov stability
theory, is equivalent to the LMI (9). Since the matrix Σ given in Theorem 1

is the negative definite matrix, we have V̇ ≤ 0. This result leads V ≤ V (0).
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Then, we have the followings:

V (0) = xT (0)Px(0) + 2

n∑

i=1

di

∫ xi(0)

0

gi(s)ds +

∫ 0

−h(0)

e2ksgT (x(s))R1

·g(x(s))ds +

∫ 0

−h(0)

e2αsxT (s)R2x(s)ds +

∫ 0

−h̄

∫ 0

s

e2αsẋT (u)R3ẋ(u)duds.

Further we have

V (0) ≤ λM (P )‖φ‖2 + 2dMLM‖φ‖2 + λM (R1)L
2
M

∫ 0

−h̄

e2αsxT (s)x(s)ds

+λM (R2)

∫ 0

−h̄

e2αsxT (s)x(s)ds + λM (R3)

∫ 0

−h̄

∫ 0

s

e2αsẋT (u)ẋ(u)duds

≤ λM (P )‖φ‖2 + 2dMLM‖φ‖2 + λM (R1)L
2
M‖φ‖2

∫ 0

−h̄

e2αsds

+λM (R2)‖φ‖
2

∫ 0

−h̄

e2αsds + λM (R3)

∫ 0

−h̄

∫ 0

s

e2αsẋT (u)ẋ(u)duds

= λM (P )‖φ‖2 + 2dMLM‖φ‖2 + (λM (R1)L
2
M + λM (R2))‖φ‖

2 1− e2kh̄

2k

+λM (R3)

∫ 0

−h̄

∫ 0

s

e2αsẋT (u)ẋ(u)duds, (22)

where dM = maxi(di), LM = maxi(Li), and ‖φ‖ = sup−h̄≤θ≤0 ‖x(θ)‖.
It follows from Fact 1 that

ẋT (u)ẋ(u) ≤ 3xT (u)T AT Ax(u) + 3gT (x(u))WT Wg(x(u))

+ 3gT (x(t − h(u)))WT
1 W1g(x(t − h(u)))

≤ 3λM (AT A)‖φ‖2 + 3λM(WT W )L2
M‖φ‖2

+3λM (WT
1 W1)L

2
M‖φ‖2. (23)

From the relationship (23) and simple calculation, we further have

V (0) ≤

[
λM (P ) + 2dMLM +

(
λM (R1)L

2
M + λM (R2)

) 1 − e2kh̄

2α

+
(
3λM(AT A) + 3λM (WT W )L2

M + 3λM (WT
1 W1)L

2
M

)

·λM(R3)
1 − e2kh̄

2α

]
‖φ‖2 ≡ γ1‖φ‖

2.

Furthermore, we have V ≥ e2ktλm(P )‖x(t)‖2. Then, we can easily obtain

e2ktλm(P )‖x(t)‖2 ≤ V (0) ≤ γ1‖φ‖
2 (24)
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which leads to

‖x(t)‖ ≤

√
γ1

λm(P )
e−kt‖φ‖ ≡ γ2e

−kt‖φ‖, (25)

with the definition of γ2 ≥ 1. Thus by Definition 1, system (1) is exponentially
stable with the exponential convergence rate k. This completes our proof. �

Remark 1. Since the LMIs (9) in Theorem 1 can be easily solved by various
efficient convex algorithms. In this paper, we utilize Matlab’s LMI Control
Toolbox [26] which implements the interior-point algorithm. This algorithm is
significantly faster than classical convex optimization algorithms [25].

Remark 2. By iteratively solving the LMIs given in Theorem 1 with re-
spect to h̄ for fixed exponential decay rate k, one can find the maximum upper
bound of time delay h̄ for guaranteeing asymptotic stability of system (1).

Remark 3. In [17]-[19], the additional condition ḣ(t) ≤ µ < 1 is required
to guarantee the stability of DCNNs with time-varying delays. However, our
criterion do not need this condition, which is more general cases than the pre-
vious in other literaure.

Remark 4. When the bound of time-delay derivative µ is unknown, we can
obtain a delay-dependent stability criterion using similar method in Theorem
1. With the Lyapunov functional candidate,

V = e2ktxT (t)Px(t) + 2
n∑

i=1

die
2kt

∫ xi(t)

0

gi(s)ds

+

∫ t

t−h̄

∫ t

s

e2kuẋT (u)R3ẋ(u)duds,

the delay-dependent stability criterion can be obtained by letting R1 = R2 = 0
in Theorem 1.

4. Numerical Example

Example 1. Consider following cellular neural networks with time-varying
delays [21]

ẏ(t) = −Ay(t) + Wf(y(t)) + W1f(y(t − h(t))),

where A = diag{0.7, 0.7} and

W =

[
−0.3 0.3
0.1 −0.1

]
, W1 =

[
0.1 0.1
0.3 0.3

]
, L =

[
1 0
0 1

]
.

In [21], the exponential stability of the above system with unknown time-delay
derivative was investigated. The obtained maximum admissible time delay for
stability was h = 0.29145 in [21], while, by applying Theorem 1 and Remark
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4 in this paper, we have h̄ = 2.1570. Moreover, the exponential decay rate in
[21] was k = 0.04884. However, if we fix the delay bound h̄ as 1, our stabil-
ity criterion presents k = 0.1342, which means that our criterion gives larger
bounds of time-delay and exponential decay rate.

Example 2. Consider the system (1) with the following system parameters:

A = diag{4, 4}, W =

[
0.7 −0.8
0.6 0.5

]
, W1 =

[
0.4 −0.6
−0.4 0.4

]
, L =

[
1 0
0 1

]
.

Table 1 shows a comparison of our result with other ones. From Table 1, we
can see our obtained maximum allowable time-delay bounds which guarantees
the asymptotic stability of the above system 1 with the same exponential decay
rate k = 0.7764 is larger than results in other literature.

Table 1. Stability bounds of time-delay with µ = 0.001 and
k = 0.7764

[22] [20] Our result

Stability bounds 1 1.32 1.48

5. Conclusion

In this paper, the problems of exponential stability and exponential conver-
gence rate criterion for cellular neural networks with time-varying delays have
been studied. By constructing a suitable Lyapunov-Krasovskii functionals and
based on LMI framework, the delay-dependent exponential stability criterion
are derived. Two numerical examples are included to show that our proposed
method provides a larger time-delay bound and convergence rates than other
results.
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