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Abstract

Based on the Lyapunov functional stability analysis for differential equations and the linear matrix inequality (LMI)
optimization approach, A novel criterion for the global asymptotic stability of cellular neural networks with time-vary-
ing discrete and distributed delays is derived to guarantee global asymptotic stability. The criterion is expressed in terms
of LMIs, which can be solved easily by various convex optimization algorithms. Some numerical examples are given to
show the effectiveness of proposed method.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that a cellular neural network (CNN) is formed by many cells, and that a cell contains linear and
nonlinear circuit elements, which typically are capacitors, resistors, linear and nonlinear controlled sources, and inde-
pendent sources. The structure of a CNN is similar to that found in cellular automata. Namely any cell in a CNN is
connected only to its neighbor cells [1–14]. Nowadays, CNNs are widely used in signal processing, image processing,
pattern classification, associative memories, fixed-point computation, and so on. On the other hand, in order to deal
with moving images, one must introduce the time delays in the signal transmission among the cells. This leads to
the model of delayed neural networks (DCNNs). Thus the stability analysis of DCNNs has become an important topic
of theoretical studies in neural networks [15–23]. It is noticed that most works on delayed neural networks have dealt
with the stability analysis problem for neural networks with discrete time delays. Very recently, there have been some
initial studies on the stability analysis issue for various neural networks with distributed delays [24,8,25].

In this paper, we deal with the problem of global asymptotic stability for a class of neural networks with time-vary-
ing discrete and distributed delays using the Lyapunov theory and LMI framework. Then, a novel less conservative
criterion is given in terms of LMIs. The advantage of the proposed approach is that the resulting stability criterion
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can be used efficiently via existing numerical convex optimization algorithms such as the interior-point algorithms for
solving LMIs [26].

Throughout the paper, Rn denotes the n dimensional Euclidean space, and Rn�m is the set of all n · m real matrices.
I denotes the identity matrix with appropriate dimensions. kxk denotes the Euclidean norm of vector x. H denotes
the elements below the main diagonal of a symmetric block matrix. diag{Æ} denotes the block diagonal matrix. For
symmetric matrices X and Y, the notation X > Y (respectively, X P Y) means that the matrix X � Y is positive
definite (respectively, nonnegative).
2. Main results

Consider the following delayed neural networks with n neurons:
_yðtÞ ¼ �AyðtÞ þ W 0f ðyðtÞÞ þ W 1f ðyðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
f ðyðsÞÞdsþ b; ð1Þ
where yðtÞ ¼ ½y1ðtÞ; . . . ; ynðtÞ�
T 2 Rn is the neuron state vector, f(y(t)) = [f1(y1), f2(y2), . . . , fn(yn)]T denotes the bounded

neuron activation function with fi(0) = 0, b = [b1, . . . ,bn]T is a constant input vector, A = diag(ai) is a positive diagonal
matrix, and W 0 ¼ ðw0

ijÞn�n, W 1 ¼ ðw1
ijÞn�n, W 2 ¼ ðw2

ijÞn�n are the interconnection matrices representing the weight coef-
ficients of the neurons, the time delays h(t) is bounded nonnegative functions satisfying 0 6 hðtÞ 6 �h, s(t) > 0 is the dis-
tributed time delay satisfying 0 6 sðtÞ 6 �s, and it is assumed that _hðtÞ < hd < 1.

In this paper, it is assumed that the activation function f(y) is nondecreasing, bounded and globally Lipschitz; that is
0 6
fiðn1Þ � fiðn2Þ

n1 � n2

6 ki; i ¼ 1; 2; . . . ; n. ð2Þ
Then, by using the well-known Brouwer’s fixed point theorem [10], one can easily prove that there exists at least one
equilibrium point for Eq. (1).

For the sake of simplicity in the stability analysis of the system (1), we make the following transformation to the
system (1):
xð�Þ ¼ yð�Þ � y�;
where y� ¼ ðy�1; y�2; . . . ; y�nÞ
T is an equilibrium point of Eq. (1). Under the transformation, it is easy to see that the system

(1) becomes
_xðtÞ ¼ �AxðtÞ þ W 0gðxðtÞÞ þ W 1gðxðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
gðxðsÞÞds; ð3Þ
where xðtÞ ¼ ½ x1ðtÞ x2ðtÞ � � � xnðtÞ �T 2 Rn is the state vector of the transformed system, g(x) = [g1(x), . . . ,gn(x)]T and
gjðxjðtÞÞ ¼ fjðxjðtÞ þ y�j Þ � fjðy�j Þ with gj(0) = 0, "j. It is noted that each activation function gi(Æ) satisfies the following
sector condition:
0 6
giðn1Þ � giðn2Þ

n1 � n2

6 ki; i ¼ 1; 2; . . . ; n. ð4Þ
The following fact and lemmas will be used for deriving main result.

Fact 1. (Schur complement) Given constant symmetric matrices R1, R2, R3 where R1 ¼ RT
1 and 0 < R2 ¼ RT

2 , then
R1 þ RT

3 R�1
2 R3 < 0 if and only if
R1 RT
3

R3 �R2

" #
< 0 or

�R2 R3

RT
3 R1

� �
< 0.
Lemma 1. [27] Assume that a 2 Rna , b 2 Rnb , and N 2 Rna�nb are defined, then for any matrices X 2 Rna�na , Y 2 Rna�nb

and Z 2 Rnb�nb , the following holds:
�2aTNb 6
a

b

� �T X Y � N

H Z

� �
a

b

� �
;

X Y

H Z

� �
P 0.
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Lemma 2. [28] For any constant matrix R 2 Rn�n, R = RT > 0, scalar c > 0, vector function x : ½0; c� ! Rn such that the

integrations concerned are well defined, then
Z c

0

xðsÞds
� �T

R
Z c

0

xðsÞds
� �

6 c
Z c

0

xTðsÞRxðsÞds. ð5Þ
Now we will present a new result for asymptotic stability of Eq. (3).

Theorem 1. For given 0 6 hðtÞ 6 �h, _hðtÞ 6 hd < 1, 0 6 sðtÞ 6 �s, and K = diag{k1,k2, . . . , kn}, the equilibrium point of (3)
is globally asymptotically stable if there exist positive definite matrices P, Q, R, Z, S, X, a positive diagonal matrix

D = diag{d1,d2, . . . , dn} and any matrix Y, satisfying the following two LMIs:
P1 PW 0 PW 1 þ Y T PW 2 ��hATZ

H P2 DW 1 DW 2
�hW T

0 Z

H H P3 0 �hW T
1 Z

H H H �S �hW T
2 Z

H H H H ��hZ

2
66666664

3
77777775
< 0; ð6Þ

X Y

H Z

" #
P 0; ð7Þ
where
P1 ¼ �ATP � PAþ R;

P2 ¼ �2DAK�1 þ DW 0 þ W T
0 Dþ Qþ �s2S;

P3 ¼ �ð1� hdÞQ� YK�1 � K�1Y þ �hX � ð1� hdÞK�1RK�1.
Proof. Consider the following Lyapunov functional:
V ¼ xTðtÞPxðtÞ þ 2
Xn

i¼1

di

Z xiðtÞ

0

giðsÞdsþ
Z t

t�hðtÞ
gTðxðsÞÞQgðxðsÞÞdsþ

Z t

t�hðtÞ
xTðsÞRxðsÞds

þ
Z 0

��h

Z t

tþh

_xTðsÞZ _xðsÞdsdhþ �s
Z 0

��s

Z t

tþh
gTðxðsÞÞSgðxðsÞÞdsdh; ð8Þ
where P, Q, R, Z, S are positive definite matrices and di is a positive scalar.
Calculating the time derivative of V along the trajectory of (3), we have
_V ¼ 2xTðtÞP _xðtÞ þ 2gTðxðtÞÞD _xðtÞ þ gTðxðtÞÞQgðxðtÞÞ � ð1� _hðtÞÞgTðxðt � hðtÞÞÞQgðxðt � hðtÞÞÞ

þ xTðtÞRxðtÞ � ð1� _hðtÞÞxTðt � hðtÞÞRxðt � hðtÞÞ þ �h _xTðtÞZ _xðtÞ �
Z t

t��h
_xTðsÞZ _xðsÞds

þ �s2gTðxðtÞÞSgðxðtÞÞ � �s
Z t

t��s
gTðxðsÞÞSgðxðsÞÞds

6 2xTðtÞP _xðtÞ þ 2gTðxðtÞÞD _xðtÞ þ gTðxðtÞÞQgðxðtÞÞ � ð1� hdÞgTðxðt � hðtÞÞÞQgðxðt � hðtÞÞÞ
þ xTðtÞRxðtÞ � ð1� hdÞxTðt � hðtÞÞRxðt � hðtÞÞ þ �h _xTðtÞZ _xðtÞ

�
Z t

t�hðtÞ
_xTðsÞZ _xðsÞdsþ �s2gTðxðtÞÞSgðxðtÞÞ � sðtÞ

Z t

t�sðtÞ
gTðxðsÞÞSgðxðsÞÞds;

ð9Þ
where the following inequalities are used:
�
Z t

t��h
_xTðsÞZ _xðsÞds 6 �

Z t

t�hðtÞ
_xTðsÞZ _xðsÞds;

� �s
Z t

t��s
gTðxðsÞÞSgðxðsÞÞds 6 �sðtÞ

Z t

t�sðtÞ
gTðxðsÞÞSgðxðsÞÞds.
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By well-known Leibniz–Newton formula, the following equation satisfies:
2gTðxðt � hðtÞÞÞ xðtÞ � xðt � hðtÞÞ �
Z t

t�hðtÞ
_xðsÞds

 !
¼ 0. ð10Þ
Using the relationship (10), we have a new bound of _V as
_V 6 2xTðtÞP �AxðtÞþW 0gðxðtÞÞþW 1gðxðt�hðtÞÞÞþW 2

Z t

t�sðtÞ
gðxðsÞÞds

 !

þ2gTðxðtÞÞD �AxðtÞþW 0gðxðtÞÞþW 1gðxðt�hðtÞÞÞþW 2

Z t

t�sðtÞ
gðxðsÞÞds

 !

þgTðxðtÞÞQgðxðtÞÞ�ð1�hdÞgTðxðt�hðtÞÞÞQgðxðt�hðtÞÞÞþxTðtÞRxðtÞ�ð1�hdÞxTðt�hðtÞÞRxðt�hðtÞÞþ�h _xTðtÞZ _xðtÞ

�
Z t

t�hðtÞ
_xTðsÞZ _xðsÞdsþ2gTðxðt�hðtÞÞÞxðtÞ�2gTðxðt�hðtÞÞÞxðt�hðtÞÞ�2gTðxðt�hðtÞÞÞ

�
Z t

t�hðtÞ
_xðsÞdsþ�s2gTðxðtÞÞSgðxðtÞÞ�

Z t

t�sðtÞ
gðxðsÞÞds

 !T

S
Z t

t�sðtÞ
gðxðsÞÞds

 !
; ð11Þ
where Lemma 2 is utilized in the last term in Eq. (9).
By applying Lemma 1 to a term in (11), we have the following relationship:
�2

Z t

t�hðtÞ
gTðxðt � hðtÞÞÞ _xðsÞds 6 �hgTðxðt � hðtÞÞÞXgðxðt � hðtÞÞÞ þ 2gTðxðt � hðtÞÞÞðY � IÞðxðtÞ

� xðt � hðtÞÞÞ þ
Z t

t�hðtÞ
_xTðsÞZ _xðsÞds; ð12Þ
where
X Y

H Z

� �
P 0. ð13Þ
Also, the following inequalities hold from (4):
� 2gTðxðtÞÞDAxðtÞ 6 �2gTðxðtÞÞDAK�1gðxðtÞÞ;
� ð1� hdÞxTðt � hðtÞÞRxðt � hðtÞÞ 6 �ð1� hdÞgTðxðt � hðtÞÞÞK�1RK�1gðxðt � hðtÞÞÞ;
� 2gTðxðt � hðtÞÞÞYxðt � hðtÞÞ 6 �2gTðxðt � hðtÞÞÞYK�1gðxðt � hðtÞÞÞ.

ð14Þ
Then, using (12) and (14), it can be shown that
_V 6 2xTðtÞP �AxðtÞ þ W 0gðxðtÞÞ þ W 1gðxðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
gðxðsÞÞds

 !
� 2gTðxðtÞÞDAK�1gðxðtÞÞ

þ 2gTðxðtÞÞD W 0gðxðtÞÞ þ W 1gðxðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
gðxðsÞÞds

 !

þ gTðxðtÞÞQgðxðtÞÞ � ð1� hdÞgTðxðt � hðtÞÞÞQgðxðt � hðtÞÞÞ
þ xTðtÞRxðtÞ � ð1� hdÞgTðxðt � hðtÞÞÞK�1RK�1gðxðt � hðtÞÞÞ

þ �h �AxðtÞ þ W 0gðxðtÞÞ þ W 1gðxðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
gðxðsÞÞds

 !T

Z

 
�AxðtÞ

þ W 0gðxðtÞÞ þ W 1gðxðt � hðtÞÞÞ þ W 2

Z t

t�sðtÞ
gðxðsÞÞds

!
þ �hgTðxðt � hðtÞÞÞXgðxðt � hðtÞÞÞ

þ 2gTðxðt � hðtÞÞÞYxðtÞ � 2gTðxðt � hðtÞÞÞYK�1gðxðt � hðtÞÞÞ þ �s2gTðxðtÞÞSgðxðtÞÞ

�
Z t

t�sðtÞ
gðxðsÞÞds

 !T

S
Z t

t�sðtÞ
gðxðsÞÞds

 !

¼ nTðtÞðRþ CTð�hZÞ�1CÞn

ð15Þ
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where
R ¼

P1 PW 0 PW 1 þ Y T PW 2

H P2 DW 1 DW 2

H H P3 0

H H H �S

2
66664

3
77775; CT ¼

��hATZ
�hW T

0 Z
�hW T

1 Z
�hW T

2 Z

2
66664

3
77775;

nðtÞ ¼ xTðtÞ gTðxðtÞÞ gTðxðt � hðtÞÞÞ
R t

t�sðtÞ gðxðsÞÞds
� �T

� �T

.

If the matrix Rþ CTð�hZÞ�1C is a negative definite matrix, then there exist a positive scalar d such that _V < �dkxðtÞk,
which guarantees the stability of the system [30]. By Fact 1 (Schur complement), the inequality Rþ CTð�hZÞ�1C < 0 is
equivalent to the LMI (6). This completes our proof. h

Remark 1. In the work of Wang et al. [25], the stability analysis of DCNNs with constant distributed time delays is
considered. This is a special case of our work.

Remark 2. The criterion given in Theorem 1 is dependent on the time delay. It is well known that the delay-dependent
criteria are less conservative than delay-independent criteria when the delay is small.

Remark 3. By iteratively solving the LMIs given in Theorem 1 with respect to �h or �s, one can find the maximum allow-
able upper bounds of h(t) or s(t) for guaranteeing asymptotic stability of system (3).

Remark 4. The LMI solutions of Theorem 1 can be obtained by solving the eigenvalue problem with respect to solu-
tion variables, which is a convex optimization problem [26]. In this paper, we utilize Matlab’s LMI Control Toolbox
[29] which implements interior-point algorithm. This algorithm is significantly faster than classical convex optimization
algorithms [26].

Three simple examples are presented here in order to illustrate the usefulness of our result.

Example 1. [19] Consider a delayed DCNNs (3) with constant delay h(t) = h and the parameters
A ¼

1:2769 0 0 0

0 0:6231 0 0

0 0 0:9230 0

0 0 0 0:4480

2
6664

3
7775; W ¼

�0:0373 0:4852 �0:3351 0:2336

�1:6033 0:5988 �0:3224 1:2352

0:3394 �0:0860 �0:3824 �0:5785

�0:1311 0:3253 �0:9534 �0:5015

2
6664

3
7775;

W 1 ¼

0:8674 �1:2405 �0:5325 0:0220

0:0474 �0:9164 0:0360 0:9816

1:8495 2:6117 �0:3788 0:8428

�2:0413 0:5179 1:1734 �0:2775

2
6664

3
7775; W 2 ¼ 0;
and k1 = 0.1137, k2 = 0.1279, k3 = 0.7994, k4 = 0.2386.
For this example, it can be checked that the conditions in [15,18], Theorem 1 in [16], Theorem 2 in [17], and Theorem

1 in [19] are not satisfied. It means that they fail to conclude whether this system is asymptotically stable or not.
However, by applying Theorem 2 in [19] to this example, the maximum allowable bound �h of h is �h ¼ 1:4224, while by
Theorem 1 in this paper, we have �h ¼ 1:9321, which shows that our criterion is less conservative than those in [15–19].

Example 2. Consider a two-neuron neural network (3), where
A ¼
0:9 0

0 0:8

� �
; W 0 ¼

1 �1:7

�1:6 1

� �
; W 1 ¼

1 0:6

0:5 0:8

� �
;

W 2 ¼
0:4 0:3

0:1 0:2

� �
; k1 ¼ k2 ¼ 0:2; hðtÞ ¼ sðtÞ ¼ H .
Now, we are about to get the maximum allowable bound �H of the delay H for guaranteeing the stability of the system.
Then by iteratively applying Theorem 1 to the system with respect to H, it is found that the LMI in Theorem 1 is fea-
sible for 0 6 H 6 6.6789. When H = 6.6789, the LMI solutions can be obtained as



Table 1
Maximum allowable bound �H

hd 0.3 0.5 0.7 0.9

�H 23.2599 22.6761 21.5781 18.0082
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P ¼
8:6684 17:9975

17:9975 37:8523

� �
; Y ¼

�0:0115 �0:0572

�0:0967 �0:4800

� �
;

Q ¼
37:0423 �92:3849

�92:3849 230:4393

� �
; D ¼

127:9263 0

0 214:3213

� �
;

R ¼
7:5361 13:8536

13:8536 25:4675

� �
; Z ¼

0:0146 0:0578

0:0578 0:2661

� �
;

X ¼
0:0139 0:1142

0:1142 0:9524

� �
.

Example 3. Consider a third-order delayed neural network (3) [25], where
A ¼
2:3 0 0

0 3:4 0

0 0 2:5

2
64

3
75; W 0 ¼

0:9 �1:5 0:1

�1:2 1 0:2

0:2 0:3 0:8

2
64

3
75; W 1 ¼

0:8 0:6 0:2

0:5 0:7 0:1

0:2 0:1 0:5

2
64

3
75;

W 2 ¼
0:3 0:2 0:1

0:1 0:2 0:1

0:1 0:1 0:2

2
64

3
75; giðxiÞ ¼ 0:2� ðjxi þ 1j � jxi � 1jÞ=2; i ¼ 1; 2; 3; h ¼ s ¼ H .
By applying Theorem 1 to this example, we could obtain the maximum delay bound �H ¼ 23:78.

In case that the time delays are time-varying, i.e. h(t) = s(t) = H(t), the maximum allowable bound �H for several
value of hd is given in Table 1.
3. Concluding remarks

We have proposed a class of neural networks with time-varying distributed delays. An LMI approach has been
developed to solve the problem addressed. The condition for the global asymptotic stability has been derived in terms
of the solutions to the LMIs, and three numerical examples have been used to demonstrate the usefulness of our main
result.
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