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a b s t r a c t

In this paper, the problem of guaranteed cost synchronization for a complex network is
investigated. In order to achieve the synchronization, two types of guaranteed cost
dynamic feedback controller are designed. Based on Lyapunov stability theory, a linear
matrix inequality (LMI) convex optimization problem is formulated to find the controller
which guarantees the asymptotic stability and minimizes the upper bound of a given qua-
dratic cost function. Finally, a numerical example is given to illustrate the proposed
method.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Complex dynamical networks have received a great deal of attention since they are shown to widely exist in various fields
of real world [1–4] such as the Internet, the World Wide Web (WWW), food chain, electricity distribution networks, rela-
tionship networks, disease transmission networks, and so on. A complex network is a set of interconnected nodes, in which
a node is a basic unit with specific contents or dynamics. Many of these networks exhibit complexity in the overall topolog-
ical properties and dynamical properties of the network nodes and the coupled units. The complex nature of the networks
results in a series of important research problems. In particular, one significant and interesting phenomenon is the synchro-
nization of all its dynamics. Therefore, many researchers have focused on this topic and have developed several efficient syn-
chronization techniques for complex dynamical networks [5–16]. Synchronization of complex dynamical networks can be
divided into two points of view. One is the synchronization of a complex network that is called ‘inner synchronization’
[7–11]. It means that all the nodes in a complex network eventually approach to trajectory of a target node. Another is called
‘outer synchronization’ [13–15] which considers the synchronization between two or more complex networks regardless of
synchronization of inner network. Especially in inner synchronization of a complex network, there is another way to divide
study of synchronization of a complex network according to existence of control input. Sometimes in a complex network,
synchronization can be achieved without controller under the several conditions. This kind of research is just to analyze
existing phenomena. On the contrary, there is a problem of designing controller to compensate the undesirable factors.
As categories mentioned above, a control problem for inner synchronization will be investigated in this paper.

Until now, in order to treat the synchronization problem for a complex network, several control schemes such as linear
sate feedback [8], state observer based control [12], impulsive control [16], adaptive control [9,14,15] and pinning control
[10–13] are applied. However, to the best of the authors’ knowledge, the synchronization problem via dynamic feedback
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controller for complex networks has not been investigated to date. In some real control situations, there is a strong need to
construct a dynamic feedback controller instead of a static feedback controller in order to obtain a better performance and
dynamical behavior of the state response. The dynamic controller will provide more flexibility compared to the static con-
troller and the apparent advantage of this type of controller is that it provides more free parameters for selection [24]. So it is
very worth to consider the design problem of dynamic controller for synchronization in a complex network.

On the other hand, when controlling a real plant, it is also desirable to design a control system which is not only stable but
also guarantees an adequate level of performance. Chang and Peng [17] has first introduced one way for this problem that is
called guaranteed cost control approach [17–23]. The approach has the advantage of providing an upper bound on a given
linear quadratic cost function. Up to date, unfortunately, there are a few paper about the topic of guaranteed cost control for
complex network [10].

In this paper, we consider two types of dynamic feedback control for the inner synchronization of a complex network. The
dynamical property of two controllers is basically same, but they have different dimensions of control gains according to
topological structures. Moreover, designing feedback controllers which consider both stability and performance of the sys-
tem is difficult job, but it needs as an another way to solve real world control problems. Unfortunately, the guaranteed cost
control problem for synchronization of a complex network has been received very little attention until now. Therefore,
applying guaranteed cost control scheme to synchronization of a complex network deserves more attention and consider-
ation. The existence condition of such controller is derived in terms of LMIs which can be easily solved by standard convex
optimization algorithms [25].

This paper is organized as follows. A problem statement is described in Section 2. Section 3 provides the design method of
a stabilizing controller for synchronization of a complex network. A numerical example is given in Section 4 to show the
effectiveness of the derived results. Conclusions are drawn in Section 5.

Notation. Rn is the n-dimensional Euclidean space, Rm�n denotes the set of m � n real matrix. X > 0 (respectively, X P 0)
means that the matrix X is a real symmetric positive definite matrix (respectively, positive semi-definite). A(i : n, j : m)
(respectively, A(i : n)) denotes the matrix (respectively, vector) which consisted of i to n rows and j to m columns of the
matrix A. In denotes the n-dimensional identity matrix. � stands for the notation of Kronecker product.

2. Problem statement and preliminaries

Consider a complex dynamical network consisting of N linearly coupled identical nodes described by

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

cijxjðtÞ þ uiðtÞ i ¼ 1; . . . ;N; ð1Þ

where xi ¼ ðxi1; xi2; . . . ; xinÞT 2 Rn is the state vector of the ith node, f : Rn ! Rn is a smooth nonlinear vector field, ui(t) is the
control input of ith node, and cij is the coupling configuration parameter representing the coupling strength and the topo-
logical structure of the network, in which cij is nonzero if there is a connection from node i to node j(i – j), and is zero,
otherwise.

For simplicity, let us define

C ¼ ðcijÞN�N ð2Þ

and the diagonal elements of the matrix C are assumed that

cii ¼ �
XN

j¼1;j–i

cij; i ¼ 1; . . . ;N: ð3Þ

Also, the smooth nonlinear function f(�) is satisfied following Lipshitz condition:

kf ðaÞ � f ðbÞk 6 lka� bk: ð4Þ

Definition 1. A complex network is said to achieve asymptotical inner synchronization, if

x1ðtÞ ¼ x2ðtÞ ¼ � � � ¼ xNðtÞ ¼ sðtÞ as t !1;

where sðtÞ 2 Rn is a solution of a target node, satisfying

_sðtÞ ¼ f ðsðtÞÞ: ð5Þ

For our synchronization scheme, let us define error vectors as follows:

eiðtÞ ¼ sðtÞ � xiðtÞ: ð6Þ

6470 T.H. Lee et al. / Applied Mathematics and Computation 218 (2012) 6469–6481



Author's personal copy

From Eq. (6), the error dynamics is given to

_eiðtÞ ¼ �f ðeiðtÞÞ �
XN

j¼i

cijejðtÞ � uiðtÞ; i ¼ 1; . . . ;N ð7Þ

where �f ðeiðtÞÞ ¼ f ðsðtÞÞ � f ðxiðtÞÞ.
Then, Eq. (7) can be rewritten as a vector–matrix form:

_eðtÞ ¼ �C � IneðtÞ þ FðtÞ � uðtÞ; ð8Þ

where FðtÞ ¼ �f Tðe1ðtÞÞ;�f Tðe2ðtÞÞ; . . . ;�f TðeNðtÞÞ
� �T

; eðtÞ ¼ eT
1ðtÞ; eT

2ðtÞ; . . . ; eT
NðtÞ

� �T , and uðtÞ ¼ uT
1ðtÞ;uT

2; . . . ;uT
NðtÞ

� �T .
Here, the aim of this paper is to stabilize the error system (8) via dynamic feedback controller. In this regard, we propose

the following two types of dynamic feedback controllers:

� Controller I :
_f1ðtÞ ¼ Ac1 � Inf1ðtÞ þ Bc1 � IneðtÞ;
U1ðtÞ ¼ Cc1 � Inf1ðtÞ; f1ð0Þ ¼ 0;

(
ð9Þ

� Controller II :
_f2ðtÞ ¼ Ac2f2ðtÞ þ Bc2eðtÞ;
U2ðtÞ ¼ Cc2f2ðtÞ; f2ð0Þ ¼ 0;

(
ð10Þ

where f1ðtÞ 2 RnN and f2ðtÞ 2 RnN are the controller state vectors, Ac1, Bc1, Cc1 are constant gain matrices of N � N dimensions
and Ac2, Bc2, Cc2 are also constant gain matrices of nN � nN dimensions. These two control laws (U1(t), U2(t)) given in Eqs. (9)
and (10) will be applied as control input u(t) for achieving synchronization of the complex network (1).

In order to treat network performance, we are going to consider guaranteed cost synchronization of a complex network.
For this, following quadratic cost function is defined.

J ¼
Z 1

0
ðeTðtÞQ � IneðtÞ þ uTðtÞR� InuðtÞÞdt; ð11Þ

where Q and R 2 RN�N are given positive-definite matrices.
Before proceeding further, a well-known fact is given, below.

Fact 1 (Schur complements). Given constant symmetric matrices R1, R2, R3 where R1 ¼ RT
1 and 0 < R2 ¼ RT

2 , then
R1 þ RT

3R
�1
2 R3 < 0 if and only if

R1 RT
3

R3 �R2

" #
< 0; or

�R2 R3

RT
3 R1

� �
< 0:

3. Main results

In this section, two types of guaranteed cost dynamic feedback controllers will be designed to achieve our synchroniza-
tion goal as mentioned before.

First, let us consider the dynamic feedback controller (9). Applying this controller U1(t) in (9) to u(t) in error system (8)
results in the following closed-loop system

_z1ðtÞ ¼ H1 � Inz1ðtÞ þ
FðtÞ

0

� �
; ð12Þ

where

z1ðtÞ ¼
eðtÞ
f1ðtÞ

� �
2 R2nN; H1 ¼

�C �Cc1

Bc1 Ac1

� �
2 R2N�2N :

The corresponding closed-loop cost function is

J ¼
Z 1

0
zT

1ðtÞQ 1 � Inz1ðtÞdt: ð13Þ

where Q1 ¼
Q 0
0 CT

c1RCc1

� �
.

Definition 2. Consider error system (8). If there exist a controller u(t) and a positive constant J⁄ such that the closed-loop
system (12) is asymptotically stable and the closed-loop value of the cost function (11) satisfies J 6 J⁄, then J⁄ is said to be a
guaranteed cost and the controller u(t) is said to be guaranteed cost synchronization controller.

Here, the first objective is to find a stabilizing dynamic feedback controller U1(t) such that the resulting closed-loop sys-
tem is asymptotically stable and the closed loop value of the cost function (11) satisfies J 6 J⁄. The following is the result:

T.H. Lee et al. / Applied Mathematics and Computation 218 (2012) 6469–6481 6471
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Theorem 1. For given Q > 0 and R > 0 and a given Lipshitz constant L1 = lIN, if there exist positive-definite matrices S1;Y1 2 RN�N

and matrices X11;X12;X13 2 RN�N satisfying the following LMIs:

X11 Y1Q X11R X12

H �Q 0 0
H 0 �R 0
H 0 0 X13

2
6664

3
7775 < 0; ð14Þ

Y1 I

I S1

� �
> 0; ð15Þ

where

X11 ¼ Y1L1 þ L1Y1 � Y1CT � CY1 � X11 � XT
11;

X12 ¼ L1 � C þ X13 þ Y1Q ;

X13 ¼ L1S1 þ S1L1 � CT S1 � S1C þ X12 þ XT
12 þ Q ;

then, the dynamic control law (9) is the guaranteed cost synchronization controller of the complex network (1) and the upper
bound of cost function is

J 6 eTð0ÞS1 � Ineð0Þ , J�: ð16Þ

Proof. Let us consider the following Lyapunov function:

VðtÞ ¼ zT
1ðtÞP1 � Inz1ðtÞ; ð17Þ

where P1 2 R2N�2N > 0.
By use of Lipshitz condition, the time derivative of Lyapunov function (17) is

_VðtÞ ¼ zT
1ðtÞ HT

1P1 þ P1H1
� �

� Inz1ðtÞ þ 2zT
1ðtÞ

FðtÞ
0

� �
6 zT

1ðtÞ HT
1P1 þ P1H1 þ Q 1

� 	
� Inz1ðtÞ � zT

1ðtÞQ 1 � Inz1ðtÞ

¼ zT
1ðtÞR1 � Inz1ðtÞ � zT

1ðtÞQ 1 � Inz1ðtÞ; ð18Þ

where H1 ¼
L1 � C �Cc1

Bc1 Ac1

� �
and R1 ¼ HT

1P1 þ P1H1 þ Q1.

Therefore, if R1 < 0, there exist a positive scalar c1 such that

_V 6 �zT
1ðtÞQ 1 � Inz1ðtÞ 6 �c1keðtÞk

2
; ð19Þ

which guarantees the asymptotic stability of the system by Lyapunov stability theory.
It should be noted that in the matrix R1, the matrix P1 > 0 and the controller parameters Ac1, Bc1 and Cc1, which included in

the matrix H1, are unknown and occur in nonlinear fashion. Hence, the inequality R1 < 0 cannot be considered as an LMI
problem. In the following, we will use a method of changing variables such that the inequality can be solved as convex
optimization algorithm [26].

First, partition the matrix P1 and its inverse as

P1 ¼
S1 D1

DT
1 T1

� �
; P�1

1 ¼
Y1 M1

MT
1 W1

� �
; ð20Þ

where S1, Y1 are positive-definite matrices, and M1;D1 2 RN�N are invertible matrices. It should be pointed out that the equal-
ity P�1

1 P1 ¼ I gives that

M1DT
1 ¼ I � Y1S1: ð21Þ

Define two matrices as

E1 ¼
Y1 I

MT
1 0

� �
; F1 ¼

I S1

0 DT
1

� �
: ð22Þ

Then, it follows that

P1E1 ¼ F1; ET
1P1E1 ¼ ET

1F1 ¼
Y1 I

I S1

� �
> 0: ð23Þ

Now, postmultiplying and premultiplying the matrix inequality, R1 < 0, by the matrix ET
1 and by its transpose, respec-

tively, gives
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FT
1H1E1 þ ET

1HT
1F1 þ ET

1Q 1E1 < 0: ð24Þ

By the relation Eqs. (20)–(23), it can be easily obtained that Eq. (24) is equivalent to

C11 C12

H C13

� �
< 0; ð25Þ

where

C11 ¼ Y1L1 þ L1Y1 � Y1CT � CY1 �M1CT
c1 � Cc1MT

1 þ Y1QY1 þM1CT
c1RCc1MT

1;

C12 ¼ L1 � C � Y1CT S1 þ Y1BT
c1DT

1 �M1CT
c1S1 þM1AT

c1DT
1 þ Y1Q ;

C13 ¼ L1S1 þ S1L1 � CT S1 � S1C þ D1Bc1 þ BT
c1DT

1 þ Q :

ð26Þ

By defining a new set of variables as follows:

X11 ¼ M1CT
c1;

X12 ¼ D1Bc1;

X13 ¼ Y1L1S1 � Y1CT S1 þ Y1XT
12 � X11S1 þM1AT

c1DT
1;

ð27Þ

then, Eq. (25) is simplified to following inequality:

X11 þ Y1QY1 þM1CT
c1RCc1MT

1 X12

H X13

" #
< 0; ð28Þ

where X11, X12 and X13 are defined in Theorem 1.
Then, by Fact 1, the inequality (28) is equivalent to the LMI (14).
On the other hand, from Eq. (19) we have

_V 6 �zT
1ðtÞQ 1 � Inz1ðtÞ: ð29Þ

Integrating both sides of the above inequality from 0 to Tf leads toZ Tf

0
zT

1ðtÞQ 1 � Inz1ðtÞ < Vð0Þ � VðTf Þ: ð30Þ

Since the asymptotic stability of the system has already been established, we conclude that V(Tf) ? 0 as t ?1. Hence we
have

J 6 zT
1ð0ÞQ 1 � Inz1ð0Þ ¼ eTð0ÞS1 � Ineð0Þ ¼ J�: ð31Þ

This completes the proof. h

Theorem 1 presents a method of designing a dynamic feedback controller for synchronization of a complex network (1).
In the following, we will present a method of selecting the optimal guaranteed cost controller minimizing the upper bound of
the guaranteed cost (16).

Theorem 2. Consider the error system (8) with cost function (11). If the following LMI optimization problem,

min
b;S1 ;Y1 ;X11 ;X12 ;X13

b ð32Þ

subject to ðiÞ LMIs ð14Þ and ð15Þ; ð33Þ

ðiiÞ �b eTð0ÞS1 � In

H �S1 � In

� �
< 0 ð34Þ

has the solution set (b, S1,Y1,X11,X12,X13), the controller (9) is the optimal dynamic guaranteed cost synchronization controller
which ensures the minimization of the guaranteed cost (16) of the system. The optimal cost is J⁄ = b.

Proof. By Theorem 1, (33) is clear, and from Fact 1, the LMI (34) is equivalent to eT(0)S1 � Ine(0) < b. So, it follows from (16).
Thus, the minimization of b implies the minimization of the guaranteed cost (16). It is well-known that the convexity of the
LMI optimization problem ensures that a global optimum, when it exists, is reachable. This completes the proof. h

Remark 1. Given any solution of the LMIs given in Eqs. (14) and (15) in Theorem 1, a corresponding controller of the form
Eq. (9) will be constructed as follows:

� Compute the invertible matrices M1 and D1 satisfying Eq. (21) using matrix algebra.
� Utilizing the matrices M1 and D1 obtained above, solve the system of Eq. (27) for Bc1, Cc1 and Ac1 (in this order).

T.H. Lee et al. / Applied Mathematics and Computation 218 (2012) 6469–6481 6473
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In Theorem 1 and 2, control parameters, Ac1, Bc1, Cc1, have been calculated with N � N dimensions. After getting the con-
trol parameters Ac1, Bc1, Cc1, control input is applied to the system by using Kronecker product. On the other side, there is
another way that is to consider control parameters Ac2, Bc2, Cc2 with nN � nN dimensions. In order to handle this method,
let’s apply control input, U2(t), given in Eq. (10) to u(t) in error system (8).

Then we obtain following closed-loop system

_z2ðtÞ ¼ H2z2ðtÞ þ
FðtÞ

0

� �
; ð35Þ

where

z2ðtÞ ¼
eðtÞ
f2ðtÞ

� �
2 R2nN; H2 ¼

�C � In �Cc2

Bc2 Ac2

� �
2 R2nN�2nN :

The corresponding closed-loop cost function is

J ¼
Z 1

0
zT

2ðtÞ
Q2 0
0 CT

c2R2Cc2

� �
z2ðtÞdt �

Z 1

0
zT

2ðtÞQ 2z2ðtÞdt; ð36Þ

where Q2 = Q � In and R2 = R � In.
Then we have following theorem.

Theorem 3. For given Q > 0 and R > 0 and a given Lipshitz constant L2 = lInN, if there exist positive-definite matrices
S2;Y2 2 RnN�nN and matrices X21;X22;X23 2 RnN�nN satisfying the following LMIs:

X21 Y2Q 2 X21R2 X22

H �Q2 0 0
H 0 �R2 0
H 0 0 X23

2
6664

3
7775 < 0; ð37Þ

Y2 I
I S2

� �
> 0; ð38Þ

where

X21 ¼ Y2L2 þ L2Y2 � Y2CT � CY2 � X21 � XT
21;

X22 ¼ L2 � C þ X23 þ Y2Q 2;

X23 ¼ L2S2 þ S2L2 � CT S2 � S2C þ X22 þ XT
22 þ Q2;

then, the dynamic control law (10) is the guaranteed cost synchronization controller of the complex network Eq. (1) and the upper
bound of cost function is

J 6 eTð0ÞS2eð0Þ , J�: ð39Þ

Proof. Let us consider the following Lyapunov function:

VðtÞ ¼ zT
2ðtÞP2z2ðtÞ; ð40Þ

where P2 2 R2nN�2nN > 0.
Then the rest of proof for Theorem 3 is straightforward from the proof of Theorem 1, so, it is omitted. h

The optimal control law minimizing upper bound of the guaranteed cost (39) can get from the following theorem.

Theorem 4. Consider the error system (8) with cost function (11). If the following LMI optimization problem,

min
b;S2 ;Y2 ;X21 ;X22 ;X23

b ð41Þ

subject to ðiÞ LMIs ð37Þ and ð38Þ ð42Þ

ðiiÞ �b eTð0ÞS2

H �S2

� �
< 0 ð43Þ

has the solution set (b, S2,Y2,X21,X22,X23), the controller (10) is the optimal dynamic feedback controller which ensures the mini-
mization of the guaranteed cost (39) of the system. The optimal cost is J⁄ = b.

Proof. The proof of Theorem 4 is also same to proof of Theorem 2, so, it is omitted. h
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Fig. 1. The chaotic behavior of Chua’s circuit.
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Remark 2. The difference between the controller (9) and (10) is the dimensions of control gains. In case of the controller (9),
control parameters, Ac1, Bc1, Cc1, are calculated from N � N dimensional LMI variables. It means that controller (9) has just N
control gain at one node regardless of dimensions of a node. On the other hand, the control parameters of the controller (10),
Ac2, Bc2, Cc2, are obtained from nN � nN dimensional LMI variables. So, controller (10) has n � nN control gain associated with
each nodes. For instance, 1st node of the system is affected from control state f1(1 : n) or f2(1 : n) by multiplying Cc1(1,1) or
Cc2(1 : n,1 : n), respectively. So, in order to find feasible LMI solution set and control parameters in the same system, the case
of the controller (10) take more time but is more flexible method than the case of the controller (9).

4. Numerical example

In order to show the effectiveness of the proposed method, we present a numerical example which is inner synchroni-
zation of a complex network with four identical nodes. Each nodes are Chua’s chaotic circuit [27] and its chaotic behavior
is displayed in Fig. 1. Thus, the complex network system consisting of four nodes is described by:

_xiðtÞ ¼ f ðxiðtÞÞ þ
XN

j¼1

cijxjðtÞ þ uiðtÞ; i ¼ 1; . . . ;4; ð44Þ

where

f ðxiðtÞÞ ¼
aðxi2 � hðxi1ÞÞ
xi1 � xi2 þ xi3

�bxi2

2
64

3
75;

hðxi1Þ ¼ m1xi1 þ
1
2
ðm0 �m1Þðjxi1 þ cj � jxi1 � cjÞ;

with the parameters a = 9, b = 14.28, c = 1, m0 = �1/7, m1 = 2/7.
Here, the Chua’s circuit is also chosen as a target node. In this example, initial conditions of each nodes are chosen:

x1(0) = [�0.9 �1.5 �3.7], x2(0) = [�0.1 �0.4 0.3], x3(0) = [0.6 �1.5 0], x4(0) = [2.1 �1.5 1.3], s(0) = [0.1 0.5 – 0.7]. It is noted
that the Lipshitz constant of Chua’s circuit is l = 5 and coupling matrix, C, is given by
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Fig. 3. Error signals by Theorem 1.
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C ¼ 0:2�

�3 1 1 1
1 �3 1 1
0 1 �2 1
0 1 1 �2

2
6664

3
7775: ð45Þ

The parameters associated with cost function are chosen as Q = IN and R = IN. In order to show original behavior of the
complex network (44), the trajectories of the error signals without controller is depicted in Fig. 2. Now, by solving LMI prob-
lem (14) and (15) in Theorem 1 and (37) and (38) in Theorem 3, we can calculate feasible solution set from Eq. (27). Then, we
found gain matrices of the controller (9) and (10) (see Appendix A).

The simulation results with control input which are calculated by Theorem 1 and Theorem 3 are presented in Figs. 3 and
4. As seen in the figures, the trajectories of error systems are indeed well stabilized and also the state orbits of controller
approach to zero. It can be concluded that our proposed dynamic controller guarantees asymptotic synchronization of the
complex network (44) under some value of performance index. Additionally, Fig. 5 shows dynamic behavior of the system
(44) in case of without control input, Controller I (9) and Controller II (10), respectively.

Finally, by solving the optimization problems (32) and (41) in Theorem 2 and Theorem 4 respectively, the optimal guar-
anteed cost of closed-loop system are obtained and listed in Table 1. As seen in the table, it should be pointed out that the
optimal costs by two control methods given in (9) and (10) are same.

5. Conclusions

In this paper, the design problem of guaranteed cost dynamic feedback controller for inner synchronization of a complex
dynamical network has been studied by Lyapunov method and LMI framework. Two types of dynamic controller have been
proposed and existence conditions of the controllers have been derived in terms of LMIs. Finally, one numerical example was
illustrated to show the effectiveness of the designed controllers.
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Appendix A

� The parameters of controller by Theorem 1:

Ac1 ¼

�32:0682 �1:4215 �0:1990 1:2881
�1:2559 �36:8397 0:2318 0:0967
�0:0177 0:2060 �41:5051 1:5273
1:0586 0:0781 1:1378 �32:9178

2
6664

3
7775;

Bc1 ¼

�241:0386 �306:2214 �223:2174 �273:7313
�43:0955 �13:2824 458:5424 �418:0740
541:7097 �447:7295 24:3317 �3:1062
213:8543 317:7898 �215:8701 �264:0778

2
6664

3
7775;

Cc1 ¼

�0:1479 �0:0175 0:2963 0:1800
�0:1873 �0:0014 �0:2315 0:2337
�0:1645 0:2769 0:0085 �0:1843
�0:1770 �0:2406 �0:0105 �0:2267

2
6664

3
7775:

Table 1
The cost value of each method.

b

Theorem 1 429.6246
Theorem 2 15.6089
Theorem 3 205.6637
Theorem 4 15.6089
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� The parameters of controller by Theorem 3:

Ac2 ¼

�26:9264 0:0000 0:0000 0:2995 �0:5947 �0:0000
�0:0000 �26:9264 �0:0000 0:0000 0:0000 �0:6658
0:0000 �0:0000 �26:9264 0:5947 0:2995 0:0000
0:2804 0:0000 0:5568 �30:0254 0:0000 �0:0000
�0:5568 0:0000 0:2804 0:0000 �30:0254 �0:0000
�0:0000 �0:6234 �0:0000 �0:0000 �0:0000 �30:0254
�0:0040 �0:0000 �0:0596 0:1059 0:0447 �0:0000
�0:0000 0:0597 �0:0000 �0:0000 �0:0000 0:1149
0:0596 �0:0000 �0:0040 �0:0447 0:1059 0:0000
0:0000 0:6935 0:0000 �0:0000 0:0000 �0:0155
0:4500 �0:0000 0:5276 0:0151 �0:0037 �0:0000
�0:5276 0:0000 0:4500 0:0037 0:0151 0:0000

2
6666666666666666666664

0:0075 0:0000 �0:1108 �0:0000 0:4304 �0:5045
�0:0000 �0:1110 �0:0000 0:6631 �0:0000 0:0000
0:1108 0:0000 0:0075 �0:0000 0:5045 0:4304
0:1273 �0:0000 �0:0537 0:0000 0:0176 0:0043
0:0537 0:0000 0:1273 �0:0000 �0:0043 0:0176
0:0000 0:1382 0:0000 �0:0181 �0:0000 0:0000
�32:0453 0:0000 �0:0000 0:0000 �0:7449 �0:5533

0:0000 �32:0453 0:0000 0:9279 �0:0000 �0:0000
�0:0000 �0:0000 �32:0453 0:0000 0:5533 �0:7449
0:0000 0:7063 �0:0000 �28:0766 �0:0000 0:0000
�0:5670 �0:0000 0:4211 0:0000 �28:0766 �0:0000
�0:4211 0:0000 �0:5670 �0:0000 0:0000 �28:0766

3
7777777777777777777777775

;

Bc2 ¼

0:0000 �39:5489 �239:7719 �0:0000 �50:6054 �306:8040
243:0117 �0:0000 0:0000 310:9495 �0:0000 �0:0000

0:0000 �239:7719 39:5489 0:0000 �306:8040 50:6054
�0:0000 45:3105 14:1685 �0:0000 �4:5741 �1:4303
�0:0000 14:1685 �45:3105 �0:0000 �1:4303 4:5741
47:4740 0:0000 �0:0000 �4:7925 0:0000 0:0000
0:0000 �545:2575 52:5509 0:0000 424:9733 �40:9581
�547:7840 0:0000 �0:0000 426:9425 0:0000 0:0000

0:0000 52:5509 545:2575 0:0000 �40:9581 �424:9733
�229:5594 0:0000 0:0000 �365:4544 �0:0000 �0:0000
�0:0000 196:5670 118:5705 0:0000 312:9310 188:7621
�0:0000 118:5705 �196:5670 0:0000 188:7621 �312:9310

2
6666666666666666666664

�0:0000 �38:7802 �235:1113 0:0000 �48:5096 �294:0980
238:2881 �0:0000 0:0000 298:0718 �0:0000 0:0000
�0:0000 �235:1113 38:7802 0:0000 �294:0980 48:5096
0:0000 �461:2316 �144:2260 �0:0000 399:7919 125:0140
0:0000 �144:2260 461:2316 �0:0000 125:0140 �399:7919
�483:2554 0:0000 �0:0000 418:8819 0:0000 �0:0000
�0:0000 �28:0781 2:7061 0:0000 23:9353 �2:3068
�28:2082 0:0000 �0:0000 24:0463 0:0000 �0:0000
�0:0000 2:7061 28:0781 0:0000 �2:3068 �23:9353
236:2700 �0:0000 0:0000 296:0551 �0:0000 0:0000
�0:0000 �202:3131 �122:0366 0:0000 �253:5058 �152:9164
0:0000 �122:0366 202:3131 �0:0000 �152:9164 253:5058

3
7777777777777777777777775

;
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Cc2 ¼

�0:0000 0:1139 0:0000 0:0000 �0:0000 0:0170
�0:0185 �0:0000 �0:1124 0:0163 0:0051 0:0000
�0:1124 0:0000 0:0185 0:0051 �0:0163 �0:0000
�0:0000 0:1461 0:0000 0:0000 �0:0000 �0:0050
�0:0238 �0:0000 �0:1441 �0:0048 �0:0015 0:0000
�0:1441 �0:0000 0:0238 �0:0015 0:0048 �0:0000
�0:0000 0:1280 �0:0000 0:0000 0:0000 �0:2192
�0:0208 �0:0000 �0:1263 �0:2092 �0:0654 0:0000
�0:1263 0:0000 0:0208 �0:0654 0:2092 �0:0000
0:0000 0:1467 0:0000 �0:0000 �0:0000 0:1827
�0:0239 �0:0000 �0:1448 0:1744 0:0545 0:0000
�0:1448 0:0000 0:0239 0:0545 �0:1744 �0:0000

2
6666666666666666666666664

0:0000 �0:2325 0:0000 �0:1273 0:0000 0:0000
�0:2314 0:0000 0:0223 �0:0000 0:1090 0:0657
0:0223 �0:0000 0:2314 �0:0000 0:0657 �0:1090
0:0000 0:1722 0:0000 �0:1809 0:0000 0:0000
0:1714 0:0000 �0:0165 �0:0000 0:1549 0:0934
�0:0165 �0:0000 �0:1714 �0:0000 0:0934 �0:1549
�0:0000 �0:0084 �0:0000 0:1313 �0:0000 0:0000
�0:0084 0:0000 0:0008 �0:0000 �0:1124 �0:0678
0:0008 �0:0000 0:0084 0:0000 �0:0678 0:1124
0:0000 0:0164 0:0000 0:1644 0:0000 �0:0000
0:0163 0:0000 �0:0016 �0:0000 �0:1408 �0:0849
�0:0016 �0:0000 �0:0163 0:0000 �0:0849 0:1408

3
7777777777777777777777775

:
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