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This paper proposes a robust adaptive control method for synchronization of uncertain
chaotic neural networks with mixed delays. Uncertainty and disturbance in the networks
are estimated by fuzzy disturbance observer without any prior information about them.
The proposed control scheme with adaptive laws is derived based on Lyapunov–Krasovskii
stability theory to guarantee the globally asymptotical synchronization between the net-
works. An example is illustrated to show the effectiveness of the proposed method.
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1. Introduction

In the past few decades, there has been considerable attention in the study of neural networks due to their potential
applications in various areas, such as signal processing pattern recognition, static image processing, associative memory
and combinatorial optimization [1–4]. It has been shown that artificial neural network models can exhibit some chaotic
behaviors [5–8]. Since the pioneering works of Pecora and Carroll [9], Synchronization of chaotic neural networks has been
intensively investigated in many fields [10–13]. In the implementation of the neural networks, time delays between neurons
in the networks often arise in the processing of information storage and transmission, which may lead to instability, oscil-
lation, and bifurcation of the neural network model [8,14]. Many studies have been developed for the synchronization
problem of delayed chaotic neural networks. Some have considered the networks with time-varying delays [15–19].
However, there exist various chaotic neural networks with both time-varying delays and distributed delays in realistic net-
work models. Therefore, it is worth taking into account the chaotic neural networks with the mixed time delays including
time-varying and distributed delays [20–29]. A control method with two sufficient conditions to ensure the globally
exponential stability for the error system has been proposed based on the drive-response concept [20,21]. In [22], a synchro-
nization problem of the networks with mixed delays has been discussed by using an adaptive feedback control technique.
Sufficient conditions for asymptotical or exponential synchronization are derived in terms of Linear matrix inequalities
(LMIs) by constructing proper Lyapunov–Krasovskii functional [23–25]. Sliding mode control technique is proposed to
synchronize nonidentical chaotic neural networks with mixed delays [26,27]. The synchronization problems of stochastic
perturbed chaotic neural networks with mixed delays have been investigated in [28,29].

It is known that the uncertainty and disturbance are unavoidable factors in many practical situations and they can de-
stroy the network stability or can make the synchronization more difficult. Some works for uncertain neural networks have
been developed to overcome their effects [15–32]. They often require some prior information of the uncertain factors, such
as its structure or upper bound. However, the information may not be available due to physical limitations in practical cases.
Won).
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Fuzzy logic system can be a good solution to be used in the situations because it can provide an estimator for a unknown
function or value. Fuzzy disturbance observer (FDO) has been proposed to estimate uncertainty and disturbance without
requiring any prior information about them [33]. The estimated values have been used to compensate the uncertain factors
via state feedback controller. In [34], a robust tracking control approach using a discrete-time FDO has been proposed for
nonlinear sampled systems. Recently, a more precise FDO has been constructed by modifying the law used to update the
parameter vector and the modified FDO showed better performances, compared with the conventional one [35]. Even
though the FDO presented good performances to overcome the unknown factor, applications of the existing research are still
limited. Especially, there has been still no research using the technique for uncertain chaotic neural networks with mixed
time delays.

In this paper, we propose a robust adaptive synchronization method for uncertain chaotic neural networks with time-
varying delays and distributed delays. The uncertain factors including uncertainties and disturbances are estimated by
the FDO without requiring any prior knowledge about the factors. The estimated values are used to compensate the factors
in the proposed method. Based on Lyapunov–Krasovskii stability theory, the control scheme with adaptive laws is derived
and guarantees the globally asymptotical synchronization between the networks. An example is illustrated to show the
effectiveness of the proposed method.

2. Problem statement

Consider the following chaotic neural network with time-varying delay and distributed delay:
_xðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bgðxðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðxðsÞÞdsþ I; ð1Þ
where xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�T 2 Rn is the neuron state vector and C ¼ diagðc1; c2; . . . ; cnÞ is a positive diagonal matrix.
A ¼ ðaijÞn�n;B ¼ ðbijÞn�n, and D ¼ ðdijÞn�n are the connection weight matrix, the time varying delayed connection weight ma-
trix and distributively delayed connection weight matrix, respectively. I ¼ ½I1; I2; . . . ; In�T 2 Rn is an external input vector, sðtÞ
is the time-varying delay, the positive constant 0 6 rðtÞ 6 �r is the distributed time-delay. The initial conditions are given by
xiðtÞ ¼ wxiðtÞ 2 Cð½�r;0�;RÞ, where Cð½�r;0�;RÞ denotes the set of all continuous functions from ½r;0� to R and
r ¼maxfsðtÞ;rðtÞg. f ðxðtÞÞ; gðxðt � sðtÞÞÞ, and hðxðtÞÞ are the activation functions of the neurons and described as
f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ; f2ðx2ðtÞÞ; . . . ; fnðxnðtÞÞ�T ;
gðxðt � sðtÞÞÞ ¼ ½g1ðx1ðt � sðtÞÞÞ; g2ðx2ðt � sðtÞÞÞ; . . . ; gnðxnðt � sðtÞÞÞ�T ;
hðxðtÞÞ ¼ ½h1ðx1ðtÞÞ;h2ðx2ðtÞÞ; . . . ; hnðxnðtÞÞ�T :
We consider the network (1) as the drive system. The response system having the uncertainty and disturbance is established
as follows:
_yðtÞ ¼ �ðC þ DCÞyðtÞ þ ðAþ DAÞf ðyðtÞÞ þ ðBþ DBÞgðyðt � sðtÞÞÞ þ ðDþ DDÞ
Z t

t�rðtÞ
hðyðsÞÞdsþ I þ dðtÞ þ uðtÞ

¼ �CyðtÞ þ Af ðyðtÞÞ þ Bgðyðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðyðsÞÞ þXðtÞ þ I þ uðtÞ; ð2Þ
where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ynðtÞ�
T 2 Rn is the neuron state vector of the response system. C;A;B, and D are matrices which

are the same as in (1). f ðyðtÞÞ; gðyðt � sðtÞÞÞ, and hðyðtÞÞ are the activation functions of the response system neurons which are
defined in the same manner with the drive system (1). The initial conditions are given by yiðtÞ ¼ wyiðtÞ 2 Cð½�r; 0�;RÞ.
DCyðtÞ;DAf ðyðtÞÞ, and DB

R t
t�rðtÞ hðyðsÞÞds are the uncertainties and dðtÞ is the disturbance. The overall disturbance is defined

as XðtÞ ¼ ½x1ðtÞ;x2ðtÞ; . . . ;xnðtÞ� ¼ DCyðtÞ þ DAf ðyðtÞÞ þ DB
R t

t�rðtÞ hðyðsÞÞdsþ dðtÞ.
Define the synchronization error as eðtÞ ¼ yðtÞ � xðtÞ 2 Rn. Subtracting the drive system (1) from the response system (2)

yields the dynamical system
_eðtÞ ¼ �CeðtÞ þ Af ðeðtÞÞ þ Bgðeðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðeðsÞÞdsþXðtÞ þ uðtÞ; ð3Þ
where f ðeðtÞÞ ¼ f ðyðtÞÞ � f ðxðtÞÞ; gðeðtÞÞ ¼ gðyðt � sðtÞÞÞ � gðxðt � sðtÞÞÞ;hðeðtÞÞ ¼ hðyðtÞÞ � hðxðtÞÞ. Then, our goal is to design
the controller uðtÞ which makes the error dynamical system (3) stabilized, that is,
lim
t!1
keðtÞk ¼ lim

t!1
kyðtÞ � xðtÞk ¼ 0: ð4Þ
This means that the response system (2) is synchronized with the drive system (1).
Throughout this paper, the activation functions f ð�Þ; gð�Þ, and hð�Þ and the delay sðtÞ satisfy the following assumptions.

Assumption 1. The activation functions f ð�Þ; gð�Þ, and hð�Þ satisfy the Lipschitz condition with positive constants kfi; kgi, and
an n� n constant matrix L, respectively, i.e., for i ¼ 1;2; . . . ;n
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jfiðaÞ � fiðbÞj 6 kfija� bj; jgiðaÞ � giðbÞj 6 kgija� bj; jhið�aÞ � hið�bÞj 6 Lj�a� �bj; ð5Þ
where a; b 2 R and �a; �b 2 Rn.
Assumption 2. The time delay sðtÞ is a bounded and continuously differentiable function such that 0 6 sðtÞ 6 �s and
0 6 _sðtÞ 6 l < 1.

The following lemmas are essential in establishing our result.

Lemma 1 [36]. Given any vector x; y of appropriate dimensions and a positive definite matrix P > 0 with compatible dimensions,
then the following inequality holds,
2xT y 6 xT Pxþ yT P�1y: ð6Þ
Lemma 2 [37]. For any positive definite matrix WT ¼W 2 Rm�m, scalar h > 0, and vector function x : ½0;h� ! Rm, such that the
integrations concerned are well defined, the following inequality holds
Z h

0
xðsÞds

 !T

W
Z h

0
xðsÞds

 !
6 h

Z h

0
xTðsÞWxðsÞds: ð7Þ
3. Adaptive synchronization using fuzzy disturbance observer

In this section, we propose an adaptive synchronization method for the uncertain chaotic neural networks (1) and (2). The
first step for the synchronization is how well we can overcome the overall disturbance XðtÞ. We will use the fuzzy logic sys-
tem (FLS) to accomplish that [38]. First, let us briefly describe the basic configuration of the FLS used in this paper. The FLS
performs a mapping from a compact set X ¼ X1 � . . .� Xn � Rn to a compact set V � R. The fuzzy rule base consists of a col-
lection of M fuzzy If–Then rules:
RðlÞ : If x1 is Al
1; and . . . and; xn is Al

n;

Then y is Gl; ð8Þ
where x ¼ ½x1; . . . ; xn�T 2 X is the input of the FLS and y 2 V is its output, where Al
i and Gl are labels of fuzzy sets in Xi and R for

l ¼ 1;2; . . . ;M. By using a product inference engine, a center-average defuzzifier, and a singleton fuzzifier, the output of the
fuzzy system can be expressed as
yðxÞ ¼
PM

l¼1yl

Qn
i¼1lAl

i
ðxiÞ

� �
PM

l¼1

Qn
i¼1lAl

i
ðxiÞ

� � ¼ hTnðxÞ; ð9Þ
where lAl
i
ðxiÞ is membership function value of the fuzzy variable xi;M is the number of fuzzy rules, h ¼ ½y1; y2; . . . ; yM �

T is an
adjustable parameter vector, and nðxÞ ¼ ½n1ðxÞ; n2ðxÞ; . . . ; nMðxÞ�T is a regressive vector defined as
nlðxÞ ¼
Qn

i¼1lAl
i
ðxiÞXM

l¼1

Qn
i¼1lAl

i
ðxiÞ

� � ; ð10Þ
which are called fuzzy basis functions (FBFs).
It is well known that the fuzzy system (9) can estimate unknown function with an arbitrarily small error based on ‘uni-

versal approximation theorem’ [38]. This characteristic provides that the overall disturbance XðtÞ including uncertainties
and disturbances of the neural network (2) can be estimated by the FLS.

Remark 1. In the existing studies [15,27,30–32], they need some information about the uncertainties or disturbances, such
as the upper bound and the structure of them. However, the information may be not available in many practical cases. The
approach using the FLS can be a good way to estimate the disturbance in such cases.
Remark 2. Takagi–Sugeno (T-S) fuzzy modeling is one of main methods using FLS. Many studies have proposed novel sta-
bility criteria for time-delayed uncertain neural networks modeled by T–S fuzzy system [39,40]. In this paper, we show that
the FLS can be used as an estimator of unknown factors in the system.
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Now, we present the FDO design procedure to obtain the estimated value of the overall disturbance XðtÞ. Consider the
following observer system
_̂yðtÞ ¼ �CyðtÞ þ Af ðyðtÞÞ þ Bgðyðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðyðsÞÞdsþ X̂ðtÞ þ uðtÞ þ PðyðtÞ � ŷðtÞÞ; ð11Þ
where P ¼ diagðp1; p2; . . . ; pnÞ > 0; ŷðtÞ ¼ ½ŷ1ðtÞ; ŷ2ðtÞ; . . . ; ŷnðtÞ�T is the state of the observer system, X̂ðtÞ ¼ ½x̂1ðtÞ;
x̂2ðtÞ; . . . ; x̂nðtÞ�T is the estimation for XðtÞ with x̂iðtÞ ¼ hT

i ðtÞniðyðtÞ; yðt � sðtÞÞÞ for i ¼ 1;2; . . . ;n. hi 2 RM is the fuzzy param-
eter vector. niðyðtÞ; yðt � sðtÞÞÞ 2 RM is the fuzzy basis function vector. Then, by the universal approximation theorem [38], an
FLS x̂iðtÞ exists such that
jxiðtÞ � x̂iðtÞj < �ei; ð12Þ
where �ei 2 R is the upper bound of fuzzy approximation error. Hence, we can obtain the estimator X̂ðtÞ for XðtÞ with arbi-
trarily small error bounds jeij ¼ jxiðtÞ � x̂iðtÞj 6 �ei 2 R.

We define the observation error as uðtÞ ¼ yðtÞ � ŷðtÞ. Then, from (2) and (11), we have the error dynamics
_uðtÞ ¼ _yðtÞ � _̂yðtÞ ¼ XðtÞ � X̂ðtÞ � PðyðtÞ � ŷðtÞÞ ¼ eðtÞ � PuðtÞ; ð13Þ
where eðtÞ ¼ e1ðtÞ; e2ðtÞ; . . . ; enðtÞ½ �T ¼ XðtÞ � X̂ðtÞ ¼ _uðtÞ þ PuðtÞ.
The disturbance reconstruction error eðtÞ can be rewritten as
eðtÞ ¼ XðtÞ � X̂ðtÞ ¼ XðtÞ � X̂�ðtÞ þ X̂�ðtÞ � X̂ðtÞ ¼ lðtÞ þmðtÞ; ð14Þ
where
lðtÞ ¼ l1ðtÞ; l2ðtÞ; . . . ; lnðtÞ½ �T ¼ XðtÞ � X̂�ðtÞ; ð15Þ

mðtÞ ¼ m1ðtÞ;m2ðtÞ; . . . ;mnðtÞ½ �T ¼ X̂�ðtÞ � X̂ðtÞ;

¼ ~hT
1ðtÞn1ðyðtÞ; yðt � sðtÞÞÞ; ~hT

2ðtÞn2ðyðtÞ; yðt � sðtÞÞÞ; . . . ; ~hT
nðtÞnnðyðtÞ; yðt � sðtÞÞÞ

h iT
; ð16Þ

~hiðtÞ ¼ h�i ðtÞ � hiðtÞ; ð17Þ

X̂�ðtÞ ¼ x̂�1ðtÞ; x̂�2ðtÞ; . . . ; x̂�nðtÞ
� �T

; ð18Þ

x̂�i ðtÞ ¼ x̂iðyðtÞ; yðt � sðtÞjh�i ðtÞÞ ¼ h�Ti ðtÞniðyðtÞ; yðt � sðtÞÞ; ð19Þ

h�i ðtÞ ¼ arg min
hiðtÞ

sup
yðtÞ;yðt�sðtÞÞ

x̂iðyðtÞ; yðt � sðtÞÞjhiÞ �xiðyðtÞ; yðt � sðtÞÞÞj j
" #

:

We propose an adaptation law for hiðtÞ of the estimator x̂iðtÞ to estimate xiðtÞ in the following theorem.

Theorem 1. Consider the chaotic neural network (2) and the observer system (11). If the adaptation law for the parameter vector
hiðtÞ for x̂iðyðtÞ; yðt � sðtÞjhiðtÞÞ is chosen as
_hiðtÞ ¼ c1niðyðtÞ; yðt � sðtÞÞÞðuiðtÞ þ c0eiðtÞÞ; ð20Þ
where c0 and c1 are positive constants, then the unknown factors xiðtÞ are estimated by x̂iðyðtÞ; yðt � sðtÞjhiðtÞÞ
¼ hT

i ðtÞniðyðtÞ; yðt � sðtÞÞÞ guaranteeing the following robust performance as follows:
Xn

i¼1

Z T

0
piu2

i ðtÞdt þ
Z T

0
ci0m2

i ðtÞdt
� �

6

Xn

i¼1

u2
i ð0Þ þ

1
ci1

~hT
i ð0Þ~hið0Þ þ

Z T

0
ci0 þ

1
pi

� 	
l2
i ðtÞdt

� �
: ð21Þ
Proof. Choose the following Lyapunov function candidate:
VFðtÞ ¼
1
2
uTðtÞuðtÞ þ 1

2c1

Xn

i¼1

~hT
i ðtÞ~hiðtÞ; ð22Þ
where c1 is a pre-designed positive constant. By differentiating VFðtÞ along (13) and using the adaptive law (20), we can
obtain
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_VFðtÞ ¼ uTðtÞ _uðtÞ þ 1
c1

Xn

i¼1

~hT
i ðtÞ

_~hiðtÞ;¼ uTðtÞð�PuðtÞ þXðtÞ � X̂ðtÞÞ þ 1
c1

Xn

i¼1

~hT
i ðtÞ

_~hiðtÞ;

¼ uTðtÞð�PuðtÞ þXðtÞ � X̂�ðtÞ þ X̂�ðtÞ � X̂ðtÞÞ þ 1
c1

Xn

i¼1

~hT
i ðtÞ

_~hiðtÞ;

¼ �uTðtÞPuðtÞ þuTðtÞlðtÞ þuTðtÞðX̂�ðtÞ � X̂ðtÞÞ �
Xn

i¼1

~hT
i ðtÞniðyðtÞ; yðt � sðtÞÞÞðuiðtÞ þ c0eiðtÞÞ;

¼
Xn

i¼1

�piu2
i ðtÞ þuiðtÞliðtÞ þ ~hT

i ðtÞniðyðtÞ; yðt � sðtÞÞÞuiðtÞ � ~hT
i ðtÞniðyðtÞ; yðt � sðtÞÞÞðuiðtÞ þ c0eiðtÞÞ

h i
;

¼
Xn

j¼1

�piu2
i ðtÞ þuiðtÞliðtÞ � c0m2

i ðtÞ � c0miðtÞliðtÞ
� �

: ð23Þ
By applying the following inequalities
uiðtÞliðtÞ 6
1
2

piu2
i ðtÞ þ

1
2pi

l2
i ðtÞ and �miðtÞliðtÞ 6

1
2

m2
i ðtÞ þ

1
2

l2
i ðtÞ; ð24Þ
we can rewrite (23) as follows:
_VF 6
Xn

i¼1

�piu2
i ðtÞ � c0m2

i ðtÞ þ
1
2
c0m2

i ðtÞ þ
1
2
ci0l2

i ðtÞ þ
1
2

piu2
i ðtÞ þ

1
2pi

l2
i ðtÞ

� �

¼
Xn

i¼1

�1
2

piu2
i ðtÞ �

1
2
c0m2

i ðtÞ þ
1
2

c0 þ
1
pi

� 	
l2
i ðtÞ

� �
: ð25Þ
Integrating both sides of (25) from 0 to T yields
1
2

Xn

i¼1

Z T

0
piu2

i ðtÞdt þ
Z T

0
c0m2

i ðtÞdt
� �

6 VFð0Þ � VFðTÞ þ
1
2

Xn

i¼1

Z T

0
c0 þ

1
pi

� 	
l2
i ðtÞdt: ð26Þ
Inequality (26) is equivalent to (21) in Theorem 1, because VFðTÞ > 0. This completes the proof. h

Based on Barbalat’s lemma [41], the robust performance inequality (21) can be explained. If liðtÞ 2 L2, i.e.,
R1

0 l2
i ðtÞdt <1,

then ui 2 L2 and mi 2 L2. This means limt!1kuiðtÞk ¼ 0 and limt!1kmiðtÞk ¼ 0. Even though li R L2, one can say u2
i ðtÞ is

bounded by l2
i ðtÞ. Hence, we can reduce the observation error uiðtÞ to an arbitrarily small value by adjusting the pre-deter-

mined positive weighting matrix c0 þ 1
pi

. Therefore, we can conclude that X̂ðtÞ can estimate XðtÞ with arbitrarily small error.

Remark 3. The FLS has been widely applied in much literature since the work of [38]. They have used the approach to
estimate the system nonlinear function. The estimated value may cause the singularity problem because it is utilized as
denominator of the controller. By using the technique to estimate the overall disturbance, the problem can be prevented.
Moreover, we can design the FDO and the controller, independently.

From Theorem 1, we can see that the FDO with the adaptation law (20) for the parameter vector can estimate the overall
disturbance XðtÞ in (2). This means that the value can be used to compensate the overall disturbance Xi. However, fuzzy
approximation error eðtÞ still exists. To eliminate the remaining error and achieve the synchronization between (1) and
(2), we propose a robust adaptive controller design method in the following theorem.

Theorem 2. Consider the drive system (1) and the response system (2). The systems are globally asymptotically synchronized, if a
robust adaptive controller and adaptation laws are chosen as
uðtÞ ¼ �K1eðtÞ � K2
eðtÞ
keðtÞk � X̂ðtÞ; ð27Þ

_k1iðtÞ ¼ aie2
i ðtÞ; ð28Þ

_k2iðtÞ ¼ bi
e2

i ðtÞ
keiðtÞk

; ð29Þ
where K1 ¼ diagðk11; k12; . . . ; k1nÞ > 0;K2 ¼ diagðk21; k22; . . . ; k2nÞ > 0, X̂ðtÞ is the output of FDO of which the parameter vector is
adjusted by (20), and ai; bi are positive constants.
Proof. Choose the following Lyapunov–Krasovskii function candidate:
VðtÞ ¼ 1
2

eTðtÞeðtÞ þ 1
2

Xn

i¼1

1
ai

~k2
1iðtÞ þ

1
2

Xn

i¼1

1
bi

~k2
2iðtÞ þ

1
2ð1� lÞ

Z t

t�sðtÞ
gTðeðrÞÞgðeðrÞÞdr þ 1

2

Z 0

��r

Z t

tþs
eTðgÞQeðgÞdgds; ð30Þ
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where ~k1i ¼ k1iðtÞ � k�1i;
~k2i ¼ k2iðtÞ � k�2i with constants k�1i; k�2i which will be designed and Q ¼ d�rLT L with a constant d > 0.

By differentiating V1 along the error dynamics (3), we can obtain
_VðtÞ ¼ eTðtÞ _eðtÞ þ
Xn

i¼1

1
ai

~k1iðtÞ
_~k1iðtÞ þ

Xn

i¼1

1
bi

~k2iðtÞ
_~k2iðtÞ þ

1
2ð1� lÞ g

TðeðtÞÞgðeðtÞÞ

� 1� _sðtÞ
2ð1� lÞ g

Tðeðt � sðtÞÞÞgðeð�sðtÞÞÞ þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds;

¼ eTðtÞ �CeðtÞ þ Af ðeðtÞÞ þ Bgðeðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðeðsÞÞdsþXðtÞ þ uðtÞ

" #

þ
Xn

i¼1

1
ai

~k1iðtÞ
_~k1iðtÞ þ

Xn

i¼1

1
bi

~k2iðtÞ
_~k2iðtÞ þ

1
2ð1� lÞ g

TðeðtÞÞgðeðtÞÞ � 1� _sðtÞ
2ð1� lÞ g

Tðeðt � sðtÞÞÞgðeð�sðtÞÞÞ

þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds: ð31Þ
By using the control laws (27)–(29) and the definition of eðtÞ (14), we have
_VðtÞ ¼ eTðtÞ �CeðtÞ þ Af ðeðtÞÞ þ Bgðeðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðeðsÞÞdsþXðtÞ � K1eðtÞ � K2

eðtÞ
keðtÞk � X̂ðtÞ

" #

þ
Xn

i¼1

1
ai

~k1iðtÞ
_~k1iðtÞ þ

Xn

i¼1

1
bi

~k2iðtÞ
_~k2iðtÞ þ

1
2ð1� lÞ g

TðeðtÞÞgðeðtÞÞ � 1� _sðtÞ
2ð1� lÞ g

Tðeðt � sðtÞÞÞgðeð�sðtÞÞÞ

þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds;

¼ eTðtÞ �CeðtÞ þ Af ðeðtÞÞ þ Bgðeðt � sðtÞÞÞ þ D
Z t

t�rðtÞ
hðeðsÞÞdsþ eðtÞ � K�1eðtÞ � K�2

eðtÞ
keðtÞk

" #

þ 1
2ð1� lÞ g

TðeðtÞÞgðeðtÞÞ � 1� _sðtÞ
2ð1� lÞ g

Tðeðt � sðtÞÞÞgðeð�sðtÞÞÞ þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds; ð32Þ
where K�1 ¼ diagðk�11; k
�
12; . . . ; k�1nÞ and K�2 ¼ diagðk�21; k

�
22; . . . ; k�2nÞ. Using Lemma 1, we have the following two inequalities
eTðtÞAf ðeðtÞÞ ¼ AT eðtÞ
h iT

f ðeðtÞÞ 6 1
2

eTðtÞAAT eðtÞ þ 1
2

f TðeðtÞÞf ðeðtÞÞ; ð33Þ

eTðtÞBgðeðt � sðtÞÞÞ ¼ BT eðtÞ
h iT

gðeðt � sðtÞÞÞ 6 1
2

eTðtÞBBT eðtÞ þ 1
2

gTðeðt � sðtÞÞÞgðeðt � sðtÞÞÞ: ð34Þ
By the inequalities (33), (34) and 1� _sðtÞ
1�l P 1 derived from Assumption 2, the following inequality is obtained
_VðtÞ 6 �eTðtÞCeðtÞ þ 1
2

eTðtÞAAT eðtÞ þ 1
2

f TðeðtÞÞf ðeðtÞÞ þ 1
2

eTðtÞBBT eðtÞ þ 1
2

gTðeðt � sðtÞÞÞgðeðt � sðtÞÞÞ

þ eTðtÞD
Z t

t�rðtÞ
hðeðsÞÞdsþ eTðtÞeðtÞ � eTðtÞK�1eðtÞ � eTðtÞK�2eðtÞ

keðtÞk þ 1
2ð1� lÞ g

TðeðtÞÞgðeðtÞÞ

� 1� _sðtÞ
2ð1� lÞ g

Tðeðt � sðtÞÞÞgðeð�sðtÞÞÞ þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds 6 �eTðtÞCeðtÞ

þ 1
2

eTðtÞAAT eðtÞ þ 1
2

f TðeðtÞÞf ðeðtÞÞ þ 1
2

eTðtÞBBT eðtÞ þ eTðtÞD
Z t

t�rðtÞ
hðeðsÞÞdsþ eTðtÞeðtÞ

� eTðtÞK�1eðtÞ � eTðtÞK�2eðtÞ
keðtÞk þ 1

2ð1� lÞ g
TðeðtÞÞgðeðtÞÞ þ 1

2
�reTðtÞQeðtÞ � 1

2

Z t

t��r
eTðsÞQeðsÞds: ð35Þ
We can obtain the following inequalities from Assumption 1
jfiðeiðtÞÞj ¼ jfiðyiðtÞÞ � fiðxiðtÞÞj 6 kfijeiðtÞj; jgiðeiðtÞÞj ¼ jgiðyiðtÞÞ � giðxiðtÞÞj 6 kgijeiðtÞj; ð36Þ
Then, they are rewritten as
f TðeðtÞÞf ðeðtÞÞ ¼
Xn

i¼1

f 2
i ðeiðtÞÞ 6

Xn

i¼1

k2
fie

2
i ðtÞ ¼ eTðtÞKf eðtÞ; ð37Þ

gTðeðtÞÞgðeðtÞÞ ¼
Xn

i¼1

g2
i ðeiðtÞÞ 6

Xn

i¼1

k2
gie

2
i ðtÞ ¼ eTðtÞKgeðtÞ; ð38Þ
where Kf ¼ diagðk2
f 1; k

2
f 2; . . . ; k2

fnÞ and Kg ¼ diagðk2
g1; k

2
g2; . . . ; k2

gnÞ. Hence, we have
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_VðtÞ 6 �eTðtÞCeðtÞ þ 1
2

eTðtÞAAT eðtÞ þ 1
2

eTðtÞBBT eðtÞ þ eTðtÞeðtÞ � eTðtÞK�2eðtÞ
keðtÞk

þ eTðtÞ 1
2

Kf þ
1

2ð1� lÞKg � K�1

� �
eðtÞ þ eTðtÞD

Z t

t�rðtÞ
hðeðsÞÞdsþ 1

2
�reTðtÞQeðtÞ � 1

2

Z t

t��r
eTðsÞQeðsÞds: ð39Þ
Let us denote a variable U with a positive scalar d
U ¼ d
1
2

Z t

t�rðtÞ
hðeðsÞÞds� d�

1
2DT eðtÞ 2 Rn: ð40Þ
It follows from the matrix inequality UTU P 0 as follows:
UTU ¼ d
1
2

Z t

t�rðtÞ
hTðeðsÞÞds� d�

1
2eTðtÞD

" #
d

1
2

Z t

t�rðtÞ
hðeðsÞÞds� d�

1
2DT eðtÞ

" #
;

¼ d
Z t

t�rðtÞ
hTðeðsÞÞds

Z t

t�rðtÞ
hðeðsÞÞds�

Z t

t�rðtÞ
hTðeðsÞÞdsDT eðtÞ � eTðtÞD

Z t

t�rðtÞ
hðeðsÞÞdsþ d�1eTðtÞDDT eðtÞ

P 0: ð41Þ
Thus, we can obtain the following inequality
1
2

Z t

t�rðtÞ
hTðeðsÞÞdsDT eðtÞ þ 1

2
eTðtÞD

Z t

t�rðtÞ
hðeðsÞÞds 6

d
2

Z t

t�rðtÞ
hTðeðsÞÞ

Z t

t�rðtÞ
hðeðsÞÞdsþ d�1

2
eTðtÞDDT eðtÞ: ð42Þ
Using the inequality (42) yields
_VðtÞ 6 �eTðtÞCeðtÞ þ 1
2

eTðtÞAAT eðtÞ þ 1
2

eTðtÞBBT eðtÞ þ eTðtÞeðtÞ � eTðtÞK�2eðtÞ
keðtÞk

þ eTðtÞ 1
2

Kf þ
1

2ð1� lÞKg � K�1

� �
eðtÞ þ 1

2

Z t

t�rðtÞ
hTðeðsÞÞdsDT eðtÞ þ 1

2
eTðtÞD

Z t

t�rðtÞ
hðeðsÞÞds

þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds

6 �eTðtÞCeðtÞ þ 1
2

eTðtÞAAT eðtÞ þ 1
2

eTðtÞBBT eðtÞ þ eTðtÞeðtÞ � eTðtÞK�2eðtÞ
keðtÞk

þ eTðtÞ 1
2

Kf þ
1

2ð1� lÞKg � K�1

� �
eðtÞ þ d

2

Z t

t�rðtÞ
hTðeðsÞÞds

Z t

t�rðtÞ
hðeðsÞÞdsþ d�1

2
eTðtÞDDT eðtÞ

þ 1
2

�reTðtÞQeðtÞ � 1
2

Z t

t��r
eTðsÞQeðsÞds: ð43Þ
From Assumption 1 and Lemma 2, we further have
d
2

Z t

t�rðtÞ
hTðeðsÞÞds

Z t

t�rðtÞ
hðeðsÞÞds 6

d
2
r
Z t

t�r
hTðeðsÞÞhðeðsÞÞds 6

d
2

�r
Z t

t��r
hTðeðsÞÞhðeðsÞÞds

6
d
2

�r
Z t

t��r
eTðsÞLT LeðsÞds ¼ 1

2

Z t

t��r
eTðsÞQeðsÞds: ð44Þ
Therefore,
_VðtÞ 6 �eTðtÞCeðtÞ þ 1
2

eTðtÞAAT eðtÞ þ 1
2

eTðtÞBBT eðtÞ þ eTðtÞeðtÞ � eTðtÞK�2eðtÞ
keðtÞk

þ eTðtÞ 1
2

Kf þ
1

2ð1� lÞKg � K�1

� �
eðtÞ þ d�1

2
eTðtÞDDT eðtÞ þ 1

2
�reTðtÞQeðtÞ

6 eTðtÞ �C þ 1
2

AAT þ 1
2

BBT þ 1
2

Kf þ
1

2ð1� lÞKg � K�1 þ
d�1

2
DDT þ 1

2
�rQ

" #
eðtÞ þ

eTðtÞ �eIn � K�2
� �

eðtÞ
keðtÞk ; ð45Þ
where In 2 Rn�n is identity matrix and, by the universal approximation theorem, �e is the upper bound of kek, i.e., kek 6 �e. Tak-
ing appropriate positive parameters k1i and k2i for i ¼ 1;2; . . . ;n such that
W ¼ �C þ 1
2

AAT þ 1
2

BBT þ 1
2

Kf þ
1

2ð1� lÞKg � K�1 þ
d�1

2
DDT þ 1

2
�rQ < 0;N ¼ �eIn � K�2 < 0; ð46Þ
yields the following inequality:



Fig. 1. Chaotic behavior of the drive system.
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_VðtÞ 6 eTðtÞWeðtÞ þ eTðtÞNeðtÞ
keðtÞk 6 0: ð47Þ
From (47), it is obvious that _VðtÞ 6 0 for all eðtÞ. Moreover, the positive differentiable Lyapunov function VðtÞ is radially un-
bounded and the set S ¼ feðtÞ 2 Rnj _VðtÞ ¼ 0g ¼ feðtÞ 2 RnjeðtÞ ¼ 0g contains no solutions other than the trivial solution
eðtÞ ¼ 0. According to Lasalle’s invariance principle [42], one can conclude that the synchronization error eðtÞ is globally
asymptotically stable, i.e. limt!1keðtÞk ¼ 0. Therefore, this means that the response system (2) having both uncertainties
and disturbances is globally asymptotically synchronized with the drive system (1) by the control law (27) and adaptation
laws (28), (29). This completes the proof. h
Fig. 2. Trajectories of the drive system and response system when the FDO is not applied.



Fig. 3. Trajectories of the drive system and response system when the proposed method is applied.

Fig. 4. Actual and estimated values of the overall disturbance XðtÞ.
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4. Numerical examples

In this section, a numerical example is presented to illustrate the effectiveness of our scheme proposed in the previous
sections. The simulations are conducted in Simulink (MATLAB) using a fixed-step fourth order Runge–Kutta solver with sam-



Fig. 5. Synchronization error eðtÞ for two cases.
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ple period Ts ¼ 0:001s. We consider a two-dimensional chaotic neural network with the mixed delay as the drive system (1),
which is described with
C ¼
2 0
0 1

� �
; A ¼

1:8 �0:15
�5:2 3:5

� �
; B ¼

�1:7 �0:12
�0:26 �2:5

� �
; D ¼

0:6 0:15
�2 �0:12

� �
; I ¼

0
0

� �
;

f ðxðtÞÞ ¼ gðxðtÞÞ ¼ hðxðtÞÞ ¼
tanhðx1ðtÞÞ
tanhðx2ðtÞÞ

� �
; sðtÞ ¼ 0:1 sinðtÞ þ 1; rðtÞ ¼ 2et

1þ et
:

The initial condition associated with the drive system is given as x1ðsÞ ¼ 0:5; x2ðsÞ ¼ �0:3 for all s 2 ½�2;0�. Fig. 1 shows the
chaotic behavior of the drive system. The response system (2) is affected by uncertainties and disturbances as follows:
DC ¼
0:5 0
0 0:5

� �
; DA ¼

0:5 0
�1 �1

� �
; DB ¼

�0:5 0
0 0:6

� �
;

DD ¼
�0:3 0
0:1 0:03

� �
; dðtÞ ¼

2 sinðtÞ þ 1:6y1ðtÞ
2 cosð1:5tÞ þ 0:5y1ðtÞy2ðtÞ

� �
:

Fig. 6. State trajectories of the drive system xðtÞ and response system yðtÞ.
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The initial condition of the response system is given as y1ðsÞ ¼ �0:5; y2ðsÞ ¼ 0:8 for all s 2 ½�2;0�. The output of the FDO,

X̂ðtÞ ¼ hT
1ðtÞn1ðyðtÞ; yðt � sðtÞÞÞ hT

2ðtÞn2ðyðtÞ; yðt � sðtÞÞÞ
� �T , is applied to the control input (27). In order to construct the

FDO (11), we use the input vector of the FLS as Z ¼ z1ðtÞ z2ðtÞ z3ðtÞ z4ðtÞ½ �T ¼ y1ðtÞ y2ðtÞ y1ðt � sðtÞÞ y2ðt � sðtÞÞ½ �T

where z1ðtÞ; z3ðtÞ 2 ½�0:8;0:8� and z2ðtÞ; z4ðtÞ 2 ½�5;5�. We choose three centers of the Gaussian membership function

llðtÞ ¼ exp �ðzlðtÞ � cmlÞ2=r2
l

h i
for l ¼ 1;2;3;4 where r1 ¼ r3 ¼ 0:5 and r2 ¼ r4 ¼ 3, i.e. Cm ¼ cm1 cm2 cm3½ � for

m ¼ 1;2; . . . ;81 with uniform distance. The parameters and initial values in the FDO are c0 ¼ c1 ¼ 25; pi ¼ 5; ŷð0Þ ¼ 0, and
hð0Þ ¼ 0. Ones used in the proposed control scheme (27)–(29) are chosen as ai ¼ bi ¼ 1 and ki1ð0Þ ¼ ki2ð0Þ ¼ 0 for i ¼ 1;2.

We compare the simulation results to ones without the FDO to present its effectiveness. Fig. 2 shows the state trajectories
of the drive and response system when the FDO is not applied. One can see that the errors between the systems still remain.
On the other hand, we can remove the remaining error by using the proposed method with the FDO (Fig. 3). This is why the
estimated values for the overall disturbance XðtÞ by the FDO effectively compensate the actual one. The values XðtÞ and X̂ðtÞ
are shown in Fig. 4. The synchronization error eðtÞ ¼ yðtÞ � xðtÞ is presented to compare two cases in Fig. 5. Fig. 6 presents the
synchronization between the chaotic neural networks. Therefore, from these results we conclude that the response system
(2) is successfully synchronized with the drive system (1) by the proposed method.

5. Conclusion

We have proposed a robust adaptive synchronization method for uncertain chaotic neural networks with both time-
varying and distributed delays. By using the FDO, the uncertain factors including uncertainties and disturbances have been
estimated without requiring any prior information about the factors. The estimated values have been used to compensate
the factors. Based on Lyapunov–Krasovskii stability theory, the control scheme with adaptive laws has been derived, guar-
anteeing the globally asymptotical synchronization between the neural networks. An example has shown the effectiveness
of the proposed method.
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