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a b s t r a c t

This paper considers the problem of delay-dependent stability criteria for neural networks with time-

varying delays. First, by constructing a newly augmented Lyapunov–Krasovskii functional, a less

conservative stability criterion is established in terms of linear matrix inequalities (LMIs). Second, by

proposing a novel activation function condition which has not been considered, a further improved

result is proposed. Finally, two numerical examples utilized in other literature are given to show the

improvements over the existing ones and the effectiveness of the proposed idea.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the past few decades, neural networks have been widely
applied to various fields such as load frequency control in power
systems [1], pattern recognition [2], finance [3], associative
memories [4], mechanics of structures and materials [5], smart
antenna arrays [6], and other scientific areas [7–12]. Therefore,
neural networks play important roles in many practical systems.
Since the key feature of these applications with neural networks
is that the equilibrium points of the designed network are stable,
stability analysis of neural network is a prerequisite and an
important work. In the implementation of neural networks, time
delays naturally occur due to the finite switching speed of
amplifies and may cause some sophisticated dynamical behaviors
such as instability or oscillation of neural networks [13]. There-
fore, delay-dependent stability analysis of neural networks with
time-delays has been extensively investigated [14–30] since it is
well known that delay-dependent stability criteria are generally
less conservative than delay-independent ones when the sizes of
time-delays are small.

The main aim of delay-dependent stability analysis is to get
maximum delay bounds such that the designed networks are
asymptotically stable for any delay less than maximum delay

bounds. For the case of time-varying delays, maximum delay
bounds for guaranteeing the asymptotic stability of the networks
in [14–30] were investigated for different upper bounds of
derivative of time-varying delays. Thus, how to construct Lyapu-
nov–Krasovskii functional and estimate an upper bound of time-
derivative of it play key roles to increase delay bounds. Recently,
since a delay-partitioning idea was firstly proposed in [31], it is
well recognized that the delay-partitioning approach can reduce
the conservatism of stability criteria. One of the main advantages
of this method can obtain more tighter upper bounds obtained by
calculating the time-derivative of Lyapunov–Krasovskii func-
tional, which leads to less conservative results. However, when
the number of delay-partitioning number increases, the matrix
formulation becomes more complex and the computational
burden and time-consumption grow bigger.

In this regard, many researchers [24–30] have been studied
the delay-partitioning method for delay-dependent stability cri-
teria of neural networks with time-delays. In [24], by utilizing
different free-weighting matrices in two delay subintervals, a
piecewise delay method which is the same concept of two delay-
partitioning approaches was proposed for the stability analysis of
delayed neural networks. Xiao and Zhang [27] also studied the
stability analysis for uncertain delayed neural networks by taking
delay-partitioning number as two. Recently, in [28], the
weighting-delay-based stability criteria for neural networks with
time-varying delay were investigated by proposing the idea of
dividing the delay interval by the weighted parameters. Very
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recently, new delay-derivative-dependent stability criteria for
neural networks with unbounded distributed delay and discrete
time-varying delays were presented in [29] by introducing an
improved delay-partitioning technique and general convex com-
bination. Further improved versions of the method [29] were
introduced in [30]. However, in spite of such extensive researches
mentioned above, there are still rooms for further improvements
of the stability criteria.

In this paper, the problem of delay-dependent stability analy-
sis for neural networks with time-varying delays is investigated.
Unlike the method of [24–30], no delay-partitioning methods are
utilized. Instead, by taking more information about states and
activation functions as augmented vectors, an augmented
Lyapunov–Krasovskii’s functional is proposed. Then, inspired by
the work of [32–34], a sufficient condition such that the con-
sidered neural networks are asymptotically stable is derived in
terms of linear matrix inequalities (LMIs) which will be presented
in Theorem 1. And, with the same Lyapunov–Krasovskii’s func-
tional considered, a new activation function condition which has
not been considered yet in other literature is proposed and
utilized in Theorem 2 to reduce the conservatism of stability
criterion. Through two numerical examples utilized in other
literature, it will be shown that the proposed stability criteria
can provide larger delay bounds than the results of [24–30] in
spite of not employing delay-partitioning approaches.

Notation: Throughout this paper, Rn denotes n-dimensional
Euclidean space and Rn�m is the set of all n�m real matrices. For
symmetric matrices X and Y, the notation X4Y (respectively,
XZY) means that the matrix X�Y is positive definite (respec-
tively, nonnegative). diagf� � �g denotes the block diagonal matrix.
% represents the elements below the main diagonal of a sym-
metric matrix. The subscript ‘T’ denotes the transpose of the
matrix.

2. Problem statement

Consider the following neural networks with time-varying
delays:

_yðtÞ ¼�AyðtÞþW0gðyðtÞÞþW1gðyðt�hðtÞÞÞþb, ð1Þ

where yðtÞ ¼ ½y1ðtÞ, . . . ,ynðtÞ�
T ARn is the neuron state vector, n

denotes the number of neurons in a neural network,
gðyðtÞÞ ¼ ½g1ðy1ðtÞÞ, . . . ,gnðynðtÞÞ�

T ARn means the neuron activation
function, gðyðt�hðtÞÞÞ ¼ ½g1ðy1ðt�hðtÞÞÞ, . . . ,gnðynðt�hðtÞÞÞ�T ARn,
A¼ diagfaigARn�n is a positive diagonal matrix, W0 ¼ ðw

0
ijÞn�n

ARn�n and W1 ¼ ðw
1
ijÞn�nARn�n are the interconnection matrices

representing the weight coefficients of the neurons, and
b¼ ½b1,b2, . . . ,bn�

T ARn represents a constant input vector.
The delay, h(t), is a time-varying continuous function satisfying

0rhðtÞrhU , �1o _hðtÞrhD, ð2Þ

where hU 40 and hD are known constant scalar values.
The activation functions, giðyiðtÞÞ, i¼ 1, . . . ,n, are assumed to be

bounded and hold the following condition:

k�i r
giðuÞ�giðvÞ

u�v
rkþi , u, vAR,

uav, i¼ 1, . . . ,n, ð3Þ

where kþi and k�i are constants.
For simplicity, in stability analysis of the neural networks (1),

the equilibrium point yn ¼ ½yn

1, . . . ,yn
n�

T whose uniqueness has been
reported in [8] is shifted to the origin by utilizing the transforma-
tion xð�Þ ¼ yð�Þ�yn, which leads the system (1) to the following
form:

_xðtÞ ¼�AxðtÞþW0f ðxðtÞÞþW1f ðxðt�hðtÞÞÞ ð4Þ

where xðtÞ ¼ ½x1ðtÞ, . . . ,xnðtÞ�
T ARn is the state vector of the trans-

formed system, f ðxðtÞÞ ¼ ½f 1ðx1ðtÞÞ, . . . ,f nðxnðtÞÞ�
T and f jðxjðtÞÞ ¼

gjðxjðtÞþyn

j Þ�gjðy
n

j Þ with f jð0Þ ¼ 0ðj¼ 1, . . . ,nÞ.
It should be noted that the activation functions

f ið�Þ ði¼ 1, . . . ,nÞ satisfy the following condition [9]:

k�i r
f iðuÞ�f iðvÞ

u�v
rkþi , u, vAR,

uav, i¼ 1, . . . ,n: ð5Þ

If v¼0 in (5), then we have

k�i r
f iðuÞ

u
rkþi 8 ua0, i¼ 1, . . . ,n, ð6Þ

which is equivalent to

½f iðuÞ�k�i u�½f iðuÞ�kþi u�r0, i¼ 1, . . . ,n: ð7Þ

The objective of this paper is to investigate the delay dependent
stability analysis of system (4) which will be conducted in Section 3.

Before deriving our main results, we state the following
lemmas.

Lemma 1. For any constant positive-definite matrix MARn�n and

arb, the following inequalities hold:

ða�bÞ
Z a

b
_xT
ðsÞM _xðsÞ dsZ

Z a

b
_xðsÞ ds

� �T

M

Z a

b
_xðsÞ ds

� �
, ð8Þ

ða�bÞ2

2

Z a

b

Z a

s

_xT
ðuÞM _xðuÞ du ds

Z

Z a

b

Z a

s

_xðuÞ du ds

� �T

M

Z a

b

Z a

s

_xðuÞu ds

� �
: ð9Þ

Proof. According to Jensen’s inequality in [35], one can obtain (8).
Moreover, the following inequality holds:

ða�sÞ

Z a

s

_xT
ðuÞM _xðuÞ duZ

Z a

s

_xðuÞ du

� �T

M

Z a

s

_xðuÞ du

� �
: ð10Þ

By Schur Complements [36], Eq. (10) is equivalent to the following:R a
s
_xT
ðuÞM _xðuÞ du

R a
s
_xT
ðuÞ duR a

s
_xðuÞ du ða�sÞM�1

2
4

3
5Z0: ð11Þ

Integration of (11) from b to a yieldsR a
b

R a
s
_xT
ðuÞM _xðuÞ du ds

R a
b

R a
s
_xT
ðuÞ du dsR a

b

R a
s
_xðuÞ du ds

R a
b ða�sÞM�1 ds

2
4

3
5Z0: ð12Þ

Therefore, the inequality (12) is equivalent to the inequality (9)
according to Schur Complements. This completes the proof. &

Lemma 2 (Skelton et al. [37]). Let zARn, F¼FT ARn�n, and

BARm�n such that rankðBÞon. Then, the following statements are

equivalent:

(1) zTFzo0, Bz¼ 0, za0,
(2) ðB?ÞTFB?o0, where B? is a right orthogonal complement of B.

3. Main results

In this section, by use of augmented Lyapunov–Krasovskii
functionals, new delay-dependent stability criteria for systems
(4) will be proposed. For the sake of simplicity of matrix
representation, ei ði¼ 1, . . . ,12ÞAR12n�n are defined as block entry
matrices. (For example, eT

3 ¼ ½0, 0, I, 0, 0, 0, 0, 0, 0, 0, 0, 0�).
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The notations for some matrices are defined as

zðtÞ ¼ xT ðtÞ, xT ðt�hðtÞÞ, xT ðt�hUÞ, _x
T
ðtÞ, _xT

ðt�hUÞ,

Z t

t�hðtÞ
xT ðsÞ ds,

�
Z t�hðtÞ

t�hU

xT ðsÞ ds, f T
ðxðtÞÞ, f T

ðxðt�hðtÞÞÞ, f T
ðxðt�hUÞÞ,

Z t

t�hðtÞ
f T
ðxðsÞÞ ds,

Z t�hðtÞ

t�hU

f T
ðxðsÞÞ ds

#T

,

aðtÞ ¼ xT ðtÞ, _xT
ðtÞ, f T

ðxðtÞÞ
h iT

, bðtÞ ¼ xT ðtÞ, f T
ðxðtÞÞ

h iT
,

P1 ¼ ½e1, e3, e6þe7, e11þe12�,

P2 ¼ e4, e5, e1�e3, e8�e10
� �

,

P3 ¼ ½e1, e4, e8�, P4 ¼ ½e3, e5, e10�, P5 ¼ ½e1, e8�,

P6 ¼ ½e2, e9�, P7 ¼ ½e6, e1�e2, e11, e7, e2�e3 e12�,

G¼ ½�A, 0, 0, �I, 0, 0, 0, W0, W1, 0, 0, 0�,

F¼ e8LeT
4þe4LeT

8�e1KmLeT
4�e4LKmeT

1þe1KpDeT
4

þe4DKpeT
1�e8DeT

4�e4DeT
8 ,

X¼ ðh2
U=2Þ2e4Q3eT

4�ðhUe1�e6�e7ÞQ3ðhUe1�e6�e7Þ
T ,

C¼ hUe1Q4eT
1þhUe4Q5eT

4þe1P1eT
1þe2ð�P1þP2Þe

T
2�e3P2eT

3 ,

Y¼�2e1KmH1KpeT
1þe1ðKmþKpÞH1eT

8þe8H1ðKmþKpÞe
T
1

�2e8H1eT
8�2e2KmH2KpeT

2þe2ðKmþKpÞH2eT
9

þe9H2ðKmþKpÞe
T
2�2e9H2eT

9�2e3KmH3KpeT
3

þe3ðKmþKpÞH3eT
10þe10H3ðKmþKpÞe

T
3�2e10H3eT

10,

S1 ¼FþXþCþYþP1RPT
2þP2RPT

1þP3NPT
3�P4NPT

4

þP5QPT
5�ð1�hDÞP6QPT

6þh2
UP3GPT

3�P7

G S
% G

" #
PT

7: ð13Þ

Now, we have the following theorem.

Theorem 1. For given scalars hU 40 and hD, diagonal matrices

Kp ¼ diagfkþ1 , . . . ,kþn g and Km ¼ diagfk�1 , . . . ,k�n g, the system (4) is

asymptotically stable for 0rhðtÞrhU and _hðtÞrhD if there exist

positive diagonal matrices L¼ diagfl1, . . . ,lng, D¼ diagfd1, . . . ,dng,
Hi ¼ diagfhi1, . . . ,hing ði¼ 1,2,3Þ, positive definite matrices

R¼ ½Rij�4�4AR4n�4n, N ¼ ½Nij�3�3AR3n�3n, Q¼ ½Qij�2�2AR2n�2n,
G¼ ½Gij�3�3AR3n�3n, Qiði¼ 3,4,5Þ, any symmetric matrices

Piði¼ 1,2Þ, and any matrix S ¼ ½Sij�3�3AR3n�3n, satisfying the follow-

ing LMIs:

ðG?ÞTfS1gG?o0, ð14Þ

G S
% G

" #
40, ð15Þ

Q4 P1

% Q5

" #
40, ð16Þ

Q4 P2

% Q5

" #
40, ð17Þ

where S1 and G are defined in (13), and G? is the right orthogonal

complement of G.

Proof. For positive diagonal matrices L, D and positive definite
matrices R, N , Q, G, Qi ði¼ 3,4,5Þ, let us consider the following
Lyapunov–Krasovskii’s functional candidate V ¼

P6
i ¼ 1 Vi, where

V1 ¼

xðtÞ

xðt�hUÞR t
t�hU

xðsÞ dsR t
t�hU

f ðxðsÞÞ ds

2
666664

3
777775

T

R

xðtÞ

xðt�hUÞR t
t�hU

xðsÞ dsR t
t�hU

f ðxðsÞÞ ds

2
666664

3
777775,

V2 ¼

Z t

t�hU

aT ðsÞNaðsÞ dsþ2
Xn

i ¼ 1

li

Z xiðtÞ

0
ðf iðsÞ�k�i sÞ ds

�

þdi

Z xiðtÞ

0
ðkþi s�f iðsÞÞ ds

�
,

V3 ¼

Z t

t�hðtÞ
bðsÞTQbðsÞ ds,

V4 ¼ hU

Z t

t�hU

Z t

s
aT ðuÞGaðuÞ du ds,

V5 ¼ ðh
2
U=2Þ

Z t

t�hU

Z t

s

Z t

u

_xT
ðvÞQ3 _xðvÞ dv du ds,

V6 ¼

Z t

t�hU

Z t

s
xT ðuÞQ4xðuÞ du dsþ

Z t

t�hU

Z t

s

_xT
ðuÞQ5 _xðuÞ du ds: ð18Þ

The time-derivative of V1 is calculated as

_V 1 ¼ 2

xðtÞ

xðt�hUÞR t
t�hðtÞ xðsÞ dsþ

R t�hðtÞ
t�hU

xðsÞ dsR t
t�hðtÞ f ðxðsÞÞ dsþ

R t�hðtÞ
t�hU

f ðxðsÞÞ ds

2
666664

3
777775

T

R

_xðtÞ

_xðt�hUÞ

xðtÞ�xðt�hUÞ

f ðxðtÞÞ�f ðxðt�hUÞÞ

2
66664

3
77775

¼ zT
ðtÞ ðP1RPT

2þP2RPT
1ÞzðtÞ: ð19Þ

By calculation of _V 2, we have

_V 2 ¼ aT ðtÞNaðtÞ�aT ðt�hUÞNaðt�hUÞþ2 f ðxðtÞÞ�KmxðtÞ
� �TL _xðtÞ

þ2½KpxðtÞ�f ðxðtÞÞ�TD _xðtÞ

¼ zT
ðtÞðP3NPT

3�P4NPT
4þFÞzðtÞ: ð20Þ

With the condition _hðtÞrhD, an upper bound of V3 is obtained as

_V 3rzT
ðtÞ½P5QPT

5�ð1�hDÞP6QPT
6�zðtÞ: ð21Þ

By use of Lemma 1 and Theorem 1 in [33], an estimation of _V 4 is

_V 4 ¼ h2
Ua

T ðtÞGaðtÞ�hU

Z t

t�hðtÞ
aT ðsÞGaðsÞ ds

�hU

Z t�hðtÞ

t�hU

aT ðsÞGaðsÞ ds

rh2
Ua

T ðtÞGaðtÞ� hU

hðtÞ

� � Z t

t�hðtÞ
aðsÞ ds

� �T

G
Z t

t�hðtÞ
aðsÞ ds

� �

�
hU

hU�hðtÞ

� � Z t�hðtÞ

t�hU

aðsÞ ds

 !T

G
Z t�hðtÞ

t�hU

aðsÞ ds

 !

rh2
Ua

T ðtÞGaðtÞ�

R t
t�hðtÞ aðsÞ dsR t�hðtÞ
t�hU

aðsÞ ds

2
4

3
5

T

G S
% G

" # R t
t�hðtÞ aðsÞ dsR t�hðtÞ
t�hU

aðsÞ ds

2
4

3
5

¼ zT
ðtÞ h2

UP3GPT
3�P7

G S
% G

" #
PT

7

( )
zðtÞ: ð22Þ

For the detailed proof of Eq. (22), see [38].

By Lemma 1, _V 5 is bounded as

_V 5 ¼ ðh
2
U=2Þ2 _xT

ðtÞQ3 _xðtÞ�ðh
2
U=2Þ

Z t

t�hU

Z t

s

_xT
ðuÞQ3 _xðuÞ du ds

r ðh2
U=2Þ2 _xT

ðtÞQ3 _xðtÞ�

Z t

t�hU

Z t

s

_xðuÞ du ds

� �T

Q3

�

Z t

t�hU

Z t

s

_xðuÞ du ds

� �

¼ zT
ðtÞXzðtÞ: ð23Þ

Calculation of _V 6 leads to

_V 6 ¼ hUxT ðtÞQ4xðtÞ�

Z t

t�hU

xT ðsÞQ4xðsÞ ds

þhU _x
T
ðtÞQ5 _xðtÞ�

Z t

t�hU

_xT
ðsÞQ5 _xðsÞ ds: ð24Þ

O.M. Kwon et al. / Neurocomputing 103 (2013) 114–120116
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Inspired by the work of [34], the following two zero equalities

with any symmetric matrices P1 and P2 are considered:

0¼ xT ðtÞP1xðtÞ�xT ðt�hðtÞÞP1xðt�hðtÞÞ�2

Z t

t�hðtÞ
xT ðsÞP1 _xðsÞ ds,

0¼ xT ðt�hðtÞÞP2xðt�hðtÞÞ�xT ðt�hUÞP2xðt�hUÞ

�2

Z t�hðtÞ

t�hU

xT ðsÞP2 _xðsÞ ds: ð25Þ

With the above two zero equalities, an upper bound of _V 6 is

_V 6rzT
ðtÞCzðtÞ

�

Z t

t�hðtÞ

xðsÞ

_xðsÞ

" #T
Q4 P1

% Q5

" #
xðsÞ

_xðsÞ

" #
ds

�

Z t�hðtÞ

t�hU

xðsÞ

_xðsÞ

" #T
Q4 P2

% Q5

" #
xðsÞ

_xðsÞ

" #
ds: ð26Þ

From (7), for any positive diagonal matrices H1 ¼ diagfh11, . . . ,

h1ng, H2 ¼ diagfh21, . . . ,h2ng, and H3 ¼ diagfh31, . . . ,h3ng, the follow-

ing inequality holds:

0r�2
Xn

i ¼ 1

h1i½f iðxiðtÞÞ�k�i xiðtÞ�½f iðxiðtÞÞ�kþi xiðtÞ�

�2
Xn

i ¼ 1

h2i½f iðxiðt�hðtÞÞÞ�k�i xiðt�hðtÞÞ�½f iðxiðt�hðtÞÞÞ

�kþi xiðt�hðtÞÞ�

�2
Xn

i ¼ 1

h3i½f iðxiðt�hUÞÞ�k�i xiðt�hUÞ�½f iðxiðt�hUÞÞ�kþi xiðt�hUÞ�

¼ zT
ðtÞYzðtÞ: ð27Þ

From Eqs. (18)–(27) and by application of S-procedure [36], if

Eqs. (16) and (17) hold, then an upper bound of _V is

_V rzT
ðtÞS1zðtÞ, ð28Þ

where S1 are defined in (13).

By Lemma 2, zT
ðtÞS1zðtÞo0 with 0¼GzðtÞ is equivalent to

ðG?ÞTS1G?o0. Therefore, if LMIs (14)–(17) hold, then the neural

networks (4) is asymptotically stable. This completes the

proof. &

Remark 1. In Theorem 1, the augmented vector zðtÞ has integrat-
ing terms of activation function f ðxðtÞÞ which are

R t
t�hðtÞ f ðxðsÞÞ ds

and
R t�hðtÞ

t�hU
f ðxðsÞÞ ds. By these terms, more past history of f ðxðtÞÞ can

be utilized, which may lead less conservative results.

Remark 2. Recently, the reciprocally convex optimization tech-
nique to reduce the conservatism of stability criteria for systems
with time-varying delays was proposed in [33]. Motivated by this
work, the proposed method of [33] was utilized in Eq. (22).
However, an augmented vector with

R t
t�hðtÞ xðsÞ ds,

R t�hðtÞ
t�hU

xðsÞ ds,R t
t�hðtÞ f ðxðsÞÞ ds,

R t�hðtÞ
t�hU

f ðxðsÞÞ ds was used, which is different from
the method of [33].

Next, based on the results of Theorem 1, a further improved
stability criterion for system (1) will be introduced as Theorem 2
by utilizing new activation condition which has not been pro-
posed yet.

Theorem 2. For given scalars hU 40 and hD, diagonal matrices

Kp ¼ diagfkþ1 , . . . ,kþn g and Km ¼ diagfk�1 , . . . ,k�n g, the system (4) is

asymptotically stable for 0rhðtÞrhU and _hðtÞrhD if there exist

positive diagonal matrices L¼ diagfl1, . . . ,lng, D¼ diagfd1, . . . ,dng,
Hi ¼ diagfhi1, . . . ,hing ði¼ 1, . . . ,5Þ, positive definite matrices

R¼ ½Rij�4�4AR4n�4n, N ¼ ½Nij�3�3AR3n�3n, Q¼ ½Qij�2�2AR2n�2n,
G¼ ½Gij�3�3AR3n�3n, Qi ði¼ 3,4,5Þ, any symmetric matrices

Pi ði¼ 1,2Þ, and any matrix S ¼ ½Sij�3�3AR3n�3n, satisfying the

following LMIs:

ðG?ÞTfS1þOgG?o0, ð29Þ

G S
% G

" #
40, ð30Þ

Q4 P1

% Q5

" #
40, ð31Þ

Q4 P2

% Q5

" #
40, ð32Þ

where S1, G are defined in (13), G? is the right orthogonal

complement of G, and O is defined as

O¼�½e8�e9�ðe1�e2ÞKm�H4½e8�e9�ðe1�e2ÞKp�
T

�½e8�e9�ðe1�e2ÞKp�H4½e8�e9�ðe1�e2ÞKm�
T

�½e9�e10�ðe2�e3ÞKm�H5½e9�e10�ðe2�e3ÞKp�
T

�½e9�e10�ðe2�e3ÞðKp�H5½e9�e10�ðe2�e3ÞKm�
T : ð33Þ

Proof. From (5), the following conditions hold:

k�i r
f iðxiðtÞÞ�f iðxiðt�hðtÞÞÞ

xiðtÞ�xiðt�hðtÞÞ
rkþi ,

k�i r
f iðxiðt�hðtÞÞÞ�f jðxiðt�hUÞÞ

xiðt�hðtÞÞ�xiðt�hUÞ
rkþi ,

i¼ 1, . . . ,n: ð34Þ

For i¼ 1, . . . ,n, the above two conditions are equivalent to

½f iðxiðtÞÞ�f iðxiðt�hðtÞÞ�k�i ðxiðtÞ�xiðt�hðtÞÞÞ�

�½f iðxiðtÞÞ�f iðxiðt�hðtÞÞÞ�kþi ðxiðtÞ�xiðt�hðtÞÞÞ�r0, ð35Þ

½f iðxiðt�hðtÞÞÞ�f iðxiðt�hUÞÞ�k�i ðxiðt�hðtÞÞ�xiðt�hUÞÞ�

�½f iðxiðt�hðtÞÞÞ�f iðxiðt�hUÞÞ�kþi ðxiðt�hðtÞÞ�xiðt�hUÞÞ�r0: ð36Þ

Therefore, for any positive diagonal matrices H4 ¼

diagfh4i, . . . ,h4ng and H5 ¼ diagfh5i, . . . ,h5ng, the following inequal-
ity holds

0r�2
Xn

i ¼ 1

fh4i½f iðxiðtÞÞ�f iðxiðt�hðtÞÞÞ�k�i ðxiðtÞ�xiðt�hðtÞÞÞ�

�½f iðxiðtÞÞ�f iðxiðt�hðtÞÞÞ�kþi ðxiðtÞ�xiðt�hðtÞÞÞ�g

�2
Xn

i ¼ 1

fh5i½f iðxiðt�hðtÞÞÞ�f iðxiðt�hUÞÞ�k�i ðxiðt�hðtÞÞ�xiðt�hUÞÞ�

�½f iðxiðt�hðtÞÞÞ�f iðxiðt�hUÞÞ�kþi ðxiðt�hðtÞÞ�xiðt�hUÞÞ�g

¼ zT
ðtÞOzðtÞ: ð37Þ

By the consideration of Eq. (37) and the same Lyapunov–
Krasovskii’s functional (18), the other procedure is straightfor-
ward from the proof of Theorem 1, so we omit it. &

Remark 3. In many works [16–30], the condition of (6) was
utilized to reduce the conservatism of stability criteria. However,
the condition of Eq. (37) in Theorem 2 is proposed for the first
time in this work. Through two numerical examples in checking
the conservatism of delay-dependent stability criteria for system
(4), it will be shown that the newly proposed activation condition
significantly improves the feasible region of stability criteria by
comparing maximum delay bounds which are one of important
index for checking the conservatism of stability criteria.

Remark 4. When the information of an upper bound of _hðtÞ is
unknown or larger than one, Theorems 1 and 2 also provide
delay-dependent stability criteria for (4) by letting Q¼ 0.
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4. Numerical examples

In this section, two numerical examples which utilized in
other works to check the conservatism of stability criteria are
utilized to show the improvements on the feasible regions of the
proposed stability criteria. To do this, MATLAB, YALMIP 3.0 and
SeDuMi 1.3 are used to solve LMI problems.

Example 1. Consider the neural networks (4) with the para-
meters

A¼
2 0

0 2

� �
, W0 ¼

1 1

�1 �1

� �
, W1 ¼

0:88 1

1 1

� �
,

Kp ¼ diagf0:4,0:8g, Km ¼ diagf0,0g: ð38Þ

For this system, by dividing delay interval into two and employing

different free-weighting matrices at each interval, improved max-

imum delay bounds were obtained in [24,26] when hD is 0.8, 0.9, and

unknown (or larger than one). In [29,30], delay-partitioning techni-

ques when delay-partitioning number is two were applied to obtain

maximum delay bounds for the above system. By application of

Theorems 1 and 2, our delay bounds are obtained and the detail

comparison of our results with existing ones [24,26,29,30] is given in

Table 1. From Table 1, one can see that Theorem 1 enhances the

feasible region of stability criteria in spite of not utilizing the delay-

partitioning technique. Furthermore, Theorem 2 provides larger

delay bounds than that of Theorem 1, which shows the effectiveness

of the proposed idea in Theorem 2 to reduce the conservatism of

stability criteria. To confirm the obtained result, hU¼2.8222 for

unknown hD, a simulation result when xð0Þ ¼ ½1,�1�T , f ðxðtÞÞ ¼

½0:4 tanhðx1ðtÞÞ,0:8 tanhðx2ðtÞÞ�
T , and hðtÞ ¼ 2:82229sinðtÞ9 is shown

in Fig. 1. From Fig. 1, one can see that the state responses converge to

zero as time gets larger.

Example 2. Consider the neural networks (4) where

A¼

1:2769 0 0 0

0 0:6231 0 0

0 0 0:9230 0

0 0 0 0:4480

2
6664

3
7775,

W0 ¼

�0:0373 0:4852 �0:3351 0:2336

�1:6033 0:5988 �0:3224 1:2352

0:3394 �0:0860 �0:3824 �0:5785

�0:1311 0:3253 �0:9534 �0:5015

2
6664

3
7775,

W1 ¼

0:8674 �1:2405 �0:5325 0:0220

0:0474 �0:9164 0:0360 0:9816

1:8495 2:6117 �0:3788 0:8428

�2:0413 0:5179 1:1734 �0:2775

2
6664

3
7775,

Kp ¼ diagf0:1137, 0:1279, 0:7994, 0:2368g,

Km ¼ diagf0, 0, 0, 0g: ð39Þ

Table 2 gives the comparison results on the maximum delay
bound allowed via the methods in recent works and our new
study. From Table 2, it can be seen that Theorem 2 gives larger
delay bounds than very recent results in [26–28]. To confirm
the obtained result, hU¼2.6575 for unknown hD, a simulation
result when xð0Þ ¼ ½1,0:75,�0:75,�1�T , f ðxðtÞÞ ¼ ½0:1137 tanhðx1ðtÞÞ,
0:1279 tanhðx2ðtÞÞ, 0:7994 tanhðx3ðtÞÞ, 0:2368 tanhðx4ðtÞÞ�

T , and
hðtÞ ¼ 2:65759sinðtÞ9 is shown in Fig. 2. From Fig. 2, one can see
that the state responses also converge to zero as time gets larger.

Table 1
Delay bounds hU with different hD (Example 1).

hD 0.8 0.9 Unknown (or hD Z1)

[24] (m¼2)a 2.8634 1.9508 1.7809

[26] (m¼2)a 2.8854 1.9631 1.7810

[29] (m¼2)a 3.1150 2.1153 1.3189

[30] (m¼2)a 3.2113 2.2172 1.3718

Theorem 1 3.7174 2.6871 2.2975

Theorem 2 3.7174 2.8339 2.8222

a m is a delay-partitioning number.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (seconds)

x(
t)

x1(t)
x2(t)

Fig. 1. State responses of system considered in Example 1.

Table 2
Delay bounds hU with different hD (Example 2).

hD 0.1 0.5 0.9 Unknown (or hD Z1)

[28] ðr¼ 0:6Þ 3.3574 2.5915 2.1306 2.0779

[27] (m¼2)a 3.5546 2.6438 2.1349 –

[26] (m¼2)a 3.7525 2.7353 2.2760 2.1326

Theorem 1 3.7024 2.8589 2.3473 2.2106

Theorem 2 3.7857 3.0546 2.6703 2.6575

a m is a delay-partitioning number.

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

time (seconds)

x(
t)

x1(t)
x2(t)
x3(t)
x4(t)

Fig. 2. State responses of system considered in Example 2.
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5. Conclusions

In this paper, two delay-dependent stability criteria for neural
networks with time-varying delays have been proposed by the use
of the Lyapunov method and the LMI framework. In Theorem 1, by
construction of the augmented Lyapunov–Krasovskii functional, the
improved delay-dependent stability criterion has been proposed
without use of delay-partitioning techniques. And, with new
inequalities of activation functions, the further improved stability
criterion was proposed in Theorem 2. Through two numerical
examples, the improvement of the proposed stability criteria has
been successfully verified.
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