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Abstract

This paper considers the problems of robust non-fragile control for uncertain dis-
crete-delay large-scale systems under state feedback gain variations. Two classes of
controller gain variations are considered. Based on the Lyapunov method, the state
feedback control design for robust stability is given in terms of solutions to a linear
matrix inequality (LMI). The solutions of the LMI can be easily obtained using efficient
convex optimization techniques. A numerical example is included to illustrate the design
procedures.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

With the enlargement of dimension of a control system, analysis and control
for the system becomes very complicated. It is standard to divide such systems
into a number of interconnected subsystems. In general, a large-scale inter-
connected dynamical system can be usually characterized by a large number of
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state variables, system parametric uncertainties, and a complex interaction
between subsystems [14,17]. During the last decade, the problem of decen-
tralized stabilization of large-scale systems has received considerable attention,
because there are a large number of large scale interconnected dynamical
systems in many practical control problems, e.g. transportation systems, power
systems, communication systems, economic systems, social systems, and so on
[2,3,8,20].

Time-delays, due to the information transmission between subsystems,
naturally exist in large-scale systems and the existence of the delay is frequently
a source of instability. Therefore, the stabilization problem of the large-scale
system with time-delay in subsystem interconnections has been investigated by
many researchers [10,13,15,16,18,19,21].

On the other hand, it is generally known that feedback systems designed for
robustness with regard to plant parameters, may require very accurate con-
trollers. Recently, it is shown that relatively small perturbations in controller
parameters could even destabilize the closed-loop system [5,11]. Therefore, it is
necessary that any controller should be able to tolerate some level of controller
gain variations. This raises a new issue: how to design a controller for a given
plant with uncertainty such that the controller is non-fragile with regard to its
gain variations. More recently, there have been some studies to tackle the non-
fragile controller design problem [4,6,7,9,12,22]. However, there are no papers
considering non-fragile controller design methods of discrete-time large-scale
systems with delays.

This paper is concerned with the design problem of robust non-fragile de-
centralized controller for discrete-delay large-scale systems with parametric
uncertainties and controller gain variations. Multiplicative controller gain
variations are assumed in existence in the state feedback gain. A stability cri-
terion for robust stability of the system is derived in terms of linear matrix
inequality (LMI) using the Lyapunov method. The result obtained can be
extended to the systems with additive controller gain variations. In the ap-
proach, the controller parameters which satisfy the LMI can be easily found by
various efficient convex optimization algorithms [1].

Notations: Throughout the paper, Z" denotes the n dimensional Euclidean
space, Z"" is the set of all n x m real matrices, [ is the identity matrix with
appropriate dimensions, and block diag(-) denotes a block diagonal matrix. *
denotes the symmetric part. For symmetric matrices X and Y, the notation
X > Y (respectively, X > Y) means that the matrix X — Y is positive definite,
(respectively, non-negative).

2. Problem formulation

Consider a class of uncertain discrete-delay large-scale system composed n
interconnected subsystems described by
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Sl' : x,-(k + 1) = (Al + AA,(k))xl(k) + i(Aij + AA,](k))xj(k — hj)
i
4 (B + AB())us(K), i=1,2,....n, (1)

where x;(k) € #" is the state vector, u;(k) € #™ is the control vector, and the
time-delays, #;, are the positive constants. The system matrices 4;, B;, and 4;;
are of appropriate dimensions, and A4;(k), AB;(k), and AA4;;(k) are real-valued
matrices representing time-varying parameter uncertainties in the system.

Assume that the pair (4;,B;),i = 1,...,n, is stabilizable, and assume that the
time-varying uncertainties are of the form

AAz(k) = DaiFal(k)Eaia AB,(k) = Dhin[(k)Ebia (2)

AAij(k) = DaijElij(k)Eaijv
where D, Dy, Dy, Eu, Ep, and E,; are known constant real matrices with
appropriate dimensions, and F(k), Fy(k), and F,;(k) are unknown matrix
functions which are bounded as

Fi(k)Fu(k) <1, F(k)Fu(k)<I )
F(k)Fo(k) <TI, Vi, j = 0.
Now, although one finds the controller u;(k) = —Kyx;(k) for each subsys-

tems, the actual controller implemented is
ul(k) = —[KI+AK1]X,(k), 1= 1727...,}’[, (4)

where K; € #™" is the nominal controller gain to be designed and AK; rep-
resents the multiplicative gain perturbations of the form

AK; = H:®,(k)G.K; (5)

with H; and G; being known constant matrices, and &;(k) the uncertain pa-
rameter matrix satisfying

Tk Bi() < 1. (6)

Remark 1. The controller gain perturbation can result from the actuator de-
gradations, as well as from the requirement for re-adjustment of controller
gains during the controller implementation state [5,11]. These perturbations in
the controller gains are modelled here as uncertain gains that are dependent on
uncertain parameters. In the literature [4,7,9] the models of additive uncer-
tainties and multiplicative uncertainties are used to describe the controller gain
variation. The uncertainty given in (5) is a class of multiplicative uncertainties.



150 J.H. Park | Appl. Math. Comput. 149 (2004) 147-164

With the control law (4), the resulting closed-loop subsystem becomes

+ ZN:[AU + A4y (k)]x; (k — hy).
i

From (7) we can write the overall system in the following way:

X(k+1)=[A4+ A4 — (B+ AB)K — (B+ AB)H®(k)GK X (k)
+ (Ap + Adp) Xy (k)
where

X (k)£ [ (k)ay (k) -y (R)]
Xy (k) £ ] (k = ho)x (k = ho) - -xy (k= )],
A=Dblock diag(4,,4,,...,4,),
A4 = D,F,(k)E,,
D, = block diag(Dy1,Da3; - - -, Dan),
F,(k)2block diag(F,, (k), Fa(k), . .
E,%block diag(E,i,Ea, - - -, Ea),
B=block diag(B,,B,,...,B,),
AB 2 DyFy (k)Ey,
Dy =block diag(Dyy, Dya, - . ., Dpy),
Fy(k) 2 block diag(Fyi(k), Fia(K). .. ., Fin(K),
E,%block diag(Epi, Ep, - - -, Epn),
H =block diag(H,,H,, ..., H,),
G£block diag(G,, G, ...,G,),
®(k) 2 block diag(®,(k), D, (k), ..., ®,(k)),
K =block diag(K,Ks, ..., K,),
Ap#=block matrix with elements 4,;(i # j),

Adp= Z DyiFy(k)Ey;,
—1

I

. 7E1n(k))7

D= block matrix with elements Dy (r, /)
~ ) Dajy r=1i, L7 J,
Dy(r,j) = { 0, otherwise,
Fy(k) =block diag with diagonal elements Fy(j, /)
o S Fa J#FL J=100n,
Fu(j,)) = {07 otherwise,
E; 2 block diag with diagonal elements E;(J, /)

. Eui, j#i, j=1,...,n
E;(j.j) = 4 Zain T
ai(J:J) { 0, otherwise.
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Then, the problem addressed in this paper is that of finding a robust sta-
bilizing decentralized state feedback controllers of the form

Uk)=—-(I+ H®(k)G)KX (k), (10)
so that the closed-loop system (8) is asymptotically stabilized.

3. Design of robust non-fragile controller

In this section, we consider the problem of decentralized robust stabilization
of the uncertain closed-loop system described by (8) using the Lyapunov
method with LMI technique.

Before proceeding further, we will state well known lemma.

Lemma 1 [1]. The LMI

WT()@) Zg” >0

is equivalent to
R(x) >0, Y(x)—WxRx)"Wi(x) >0,
where Y (x) = YT(x),R(x) = R'(x) and W (x) depend affinely on x.

Then, we have following theorem for robust stability of system (8).

Theorem 1. The closed-loop system (8) is asymptotically stable, if there exist
positive scalars ¢, &, €3 and ¢4, a block diagonal matrix N, and positive definite
block diagonal matrices Q and S satisfying the following LMI 5:

E(N,Q,S, 8la82a83784) =

Q BH 0 AQ—-BN 0 0 0 0 ApSE}
x —1 H'E} 0 0 0 0 0 0
* * —&3l 0 0 0 0 0 0
x  x * -0 0 N'E] QE' N'G' 0
* * * ) 0 0 0 0
* * * * * —eqd 0 0 0
* % * * * * —el 0 0
x ok * * * * * -1 0
| * * * * * * * * —&l + EDSELT) ]
<0,

(11)
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where Q = —Q + ¢,D,D} + &,DpD] + &3D,D; + e4DyD}} + ApSA}, and

N 1/2 N 1/2
Dp = (Zm@i) . Ep= (ZE;Edf>
i=1 i=1

Then, the feedback gain K of the controller (10) is
K =NO™".

Proof. Consider a Lyapunov function
VX(k) =X"(k)PX (k) + )  XT()RX (i),

where P and R are the positive-definite matrices.
The difference of V is given by
AV =V(X(k+1)) = V(X (k)
k
=XT(k+ DPX(k+ 1)+ Y X"()RX(i)

i=k+1—h

—XTRORX(K) — 3 XT(RX ()

= X"(k)[(4+ A4 — (B+ AB)K — (B + AB)H®(k)GK)"
x P(A44 AA — (B + AB)K — (B + AB)H®(k)GK)
— P+ RIX (k) +2XT(k)(4 + A4 — (B+ AB)K
— (B+ AB)H®(k)GK)"P(Ap + Adp)X,(k)
+X] (k)[(Ap + Adp) ' P(Ap + Adp) — RIX,(k)
=X (k)MoX (k).
where
X(k) = [X"(k) XJ(k)]"
and
My =
[A+ A4 — (B+ AB)K
—(B + AB)H®(k)GK]" P[4 + A4
—(B+ AB)K — (B + AB)H®(k)GK]

XPAp + A4
~P+R Ao+ Ado)

[4+ A4 — (B + AB)K
—(B+ AB)H®(k)GK]"

(12)

(13)

(14)

* (AD+AAD)TP(AD+AAD) —R



J.H. Park | Appl. Math. Comput. 149 (2004) 147-164 153

Hence, AV} is negative if the matrix M, is negative definite. By Lemma 1
(Schur Complements), the fact that My < 0 is equivalent to

[ 1 [(A+A—(B+ABK
_ 1
M, = r < ~(B+ AB)H(D(k)GK) Ap + Adp
o —(P—R)
L * * _R
[ (A+DE(E,— (B+AB)K T
| ( ~(B + AB)H®(k)GK Ap+ ) Dafu (k)Eq
—(P—R) 0
L * R
< 0.

(16)
Using the well-known fact that
UNVT + VAU <eUUT +e7'WVT, >0 (17)

for any matrices U, ¥V and A with ATA < I, we can eliminate the unknown
factor, F,(k), F;(k) and &(k), in (16). Then we have

r [ —P'+¢&D,D}! T
te 0 Dali | 4 (g4 AB)K 4
+(B+ AB)H (B+AB) b
xHT(B+ AB)"
M, <M, = —(P-R)
* +¢'ETE, 0
+KTGTGK
N
* * —R+ &> ELEy
L i=1 p
[ [ —P ' +&D,DT ]
+82DDD£
A— (B+AB)K A
+(B + AB)H (B +AB) D
| \ xHT(B+AB)"
a —(P—R) ’
* —&—SI_IE}EG 0
+KTGTGK
i * * —R+ & 'EYEp |

where ¢, > 0 and ¢ > 0 and Dp and Ep are defined in (12).
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Using Lemma 1, the condition M, < 0 is equivalent to

M; =
o -
+&D,DT (B+AB)H A—(B+AB)K 0 0 4, O
+&DpD})
* -1 0 0 0 0 0
* * —P+R ET K'G" 0 0
* * * —el 0 0 0
* * * * -1 0 0
% * * * * -R E}
| * * * * * * =&l |
< 0.

(19)

To eliminate the uncertain factor Fj (k) in the term AB of the inequality (19),
using the fact (17) we obtain

[(1,1) BH A-BK 0 0 Ap 0
* (2,2) 0 0 0 0 0
* * (3,3) E} K'GT 0 0
My < M, = * * * —el 0 0 0 |, (20)
* * * * —I 0 0
* * * * * —R Eg
| * * * * * *  —eyl |

where & > 0,60 >0, (1,1)=—P' +D,DI + &,DpD} + &3D,D} + e4DyD},
(2,2) = =1 +&;'H'E{EyH, and (3,3) = —P+ R+ ¢,'K"E} E,K.
Again, using Lemma 1, the condition M, < 0 is also equivalent to

[(1,1) BH 0 A—BK 0 0 0 4 O
x —1 HTE] 0 0 0 0 0 0
* *  —&l 0 0 0 0 0 0
* * * —-P+R K'Ef E' K'G" 0 0
* * * * —el 0 0 0 0 <0
* * * * * -l 0 0 0
* * * * * * -1 0 0
* * * * * * * —R EJ
| * * * * * * * *  —el |




<0.

*

*

*
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r(1,1)+A4pR'4Y BH
—1 HET

*

*

*

—831

0

*
*
k

*

*

r(1,1) BH 0 A—-BK 0 0 0 0 7
x —1 HTET 0 0 0 0 0
* *  —&l 0 0 0 0 0
* * * —P+R KTEZ EI K'G" 0
* * * * —ed 0 0 0
* * * * *  —gl 0 0
* * * * * * -1 0
L * * * * * * * —&1 |
FAp]
0
0
U I T
o R [4500000 0 E]]
0
0
LED |

A-BK 0 0 0  ApR'E"
0 0 0 0 0
0 0 0 0 0
—P+R K'ET ET KTGT 0
* —&l 0 0 0
% x —gl 0 0
* * * -1 0
—&l

* * * (—i—EDR"EE

155

)

(21)

Pre- and post-multiply inequality (21) by 7T and 7, where 7 = block

diag(Z,1,1,P~',1,1,1,1), we have

*

EEE O R S

<0.

[(1,1)+4pR"'4" BH

0

—I HET
783]

*
*
*
*
*
*

*

ESE R S

AP~! —BKP™!

0
0

EEE .

0 0 0 ApR™'E]
0 0 0 0
0 0 0 0
—P' 4+ P7IRP™! PTIKTET PTIET PTIKTGT 0
—eyl 0 0 0
* —811 0 0
* * -1 0
* * * 782]+EDR’1E£_

(22)
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Using some change of variables, N = KP~', S =R~! and Q = P!, the in-
equality (22) is changed to

[Q BH 0 AQ — BN 0 0 0 ApSE}
x —1 H'E} 0 0 0 0 0
* % —e3l 0 0 0 0 0
x ok * -0+0S'0 NTE] QET NTG" 0
* ok * * —eql 0 0 0
* % * * * —el 0 0
x ok * * * * -1 0
| * * * * * * * —&l + EDSE;S |
<0,
(23)

where Q is defined in (12).
By Lemma 1, the inequality (23) is equivalent to the LMI (11). This com-
pletes the proof.

Remark 2. As a special case of the multiplicative uncertainty (5), consider the
uncertainty of the form

with §; is an uncertain real parameter. The value of §; indicates the measure of
non-fragility against controller gain variations for each subsystem S;. In this

case, the stability criterion for robust stability of the closed-loop system can be
easily obtained as

Z(N7Q7S55781182783784)

Q B5 0 AQ—BN 0 0 0 0 ApSE},
x —1 O'El 0 0 0 0 0 0
* % —g3l 0 0 0 0 0 0
ook K -0 0 N'Ej QE; N' 0
= |*x x * * ) 0 0 0 0
* % * * x  —&d 0 0 0
* % * * * * -l 0 0
* % * * * * * -1 0
R * * * * * x  —&l + EDSELT)_

<0,
(25)

where 6 = block diag(d,7, 9,1, ..., 0nI).
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Then, the measure of non-fragility in each controller for subsystems, J;, can
be obtained from the relation ¢ = diag (6,1, 9,1, ..., d,I) after finding the LMI
solutions of (25). Since the proof of deriving the criterion (25) is similar to that
of Theorem 1, it is omitted.

Remark 3. When the controller gain variations of the large-scale systems (1)
are of the additive form [4,22]:

AK; = H®,(k)G;, @] (k)®,(k) <I

with H; and G; being known constant matrices, and @(k) the uncertain pa-
rameter matrix, the stability criterion of the closed-loop system with the con-
trol law (10) is identical to the LMI (11) except that the (4, 8)th entry of X(-)
given in (11) are changed as QG". The proof is trivial and omitted.

Remark 4. In order to solve the LMIs (11) and (25) given in Theorem 1 and
Remark 2, we can utilize Matlab’s LMI Control Toolbox, which implements
state-of-the-art interior-point algorithms, which is significantly faster than
classical convex optimization algorithms [1].

Numerical example: Consider a large-scale system which is composed of the
following three interconnected subsystems

= ([0 2 (a4 o+ [t
0.1 }
0.1

i ({ 0 061 * {g 0.0530s(k)])x2(k*h2)
' ({ 6 0(-)1} i {0'04305(]{) 0.04(s)in(k)])x3(k_ )
0 1

xlk+1) = ([0.5 —0.5} + [0.09Sin(k) O.OQT)OS(k)DXQ(k)

N (i R e

e o
—0.5 .1cos(k

SR AN

n
@@+U:(
. ( 0 0.1} +{ 0 0~04C°S(k)])xl(k—h1)

10.02 0.1] " | 0.04sin(k) 0
+('0 o%{ 0 0.04cos(k)]) b
0.1 0.1] " [ 0.04sin(k) 0 )

(26)
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where

and the time-delays and initial conditions are

=2 h=5 h=71,
(1 —05]", mk) =[2 1],
=[-1 05]" for —h <k<O0.

The above system is of the form of system (7) with

0.6325 0 03 0 0.3162
D, = ) D, = ) Dy =
0 0.447 0 03 0

0.4472 0 03 0 0

0 0.6325 0 03 0.3162
E, = , Ep= y Ep=

0 0 02 0 0 02
Da12 = ) Da13 = ) Da21 = )
0 0.2236 0 02 0 0

0 0.2236 0 02

. 0 0 . 02 0] 0 0
700 0223617 P o o027 T o 02

0.2236 0 0 0.2 0
Eps = y Ear= y Euap =
0 0.2236 02 0 0.2

Dbl = Db2 = Db3 = Ebl = Eb2 = Eh3 =0.

0.2236 0 02 0 0.2
Dy = y Dg = , D= 0

0
0.4472

0
0.4472

0
02|

0.2
0 b

|
|

For the system (26), it is considered the multiplicative controller gain vari-

ations (5) with

nei 6 "]

05 0 11
H, = , G,=03 ,
0 05

Hy =05, G;=0.5.
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Solving the LMI (11), we can obtain the solutions as

0=
r230.3605 —5.0679 0 0 0 0
—5.0679 52.6327 0 0 0 0
0 0 48.5473  —28.5844 0 0
0 0 —28.5844  74.0806 0 0 ’
0 0 0 0 185.0797 —14.4258
L 0 0 0 0 —14.4258  31.0070
S =
r 874.4703  —104.7458 0 0 0 0 T
—104.7458  298.3944 0 0 0 0
0 0 55.0726 —31.1762 0 0
0 0 —31.1762  93.4527 0 0 ’
0 0 0 0 373.7688 —49.0746
L 0 0 0 0 —49.0746 165.9314 |
—5.1095 53.0619 0 0 0 0
N = 0 0 —28.5767 74.0917 0 0
0 0 38.5488 —51.3597 0 0 ’
0 0 0 0 —26.8875 33.3891 |

e = 63.3770, & =49.4389, & = 15.9039.
Since K = NQ! = diag(K;,K>,K3), the gain matrices, K;, of the stabilizing
controller, u;(k), for three subsystems are
K; =[-0.0000 1.0082],
0.0003  1.0003

= 104993 —0.5006 |’
K =[-0.0637 1.0472].

2

This implies that the obtained robust decentralized controller guarantees the
robust stability of the closed-loop system in spite of the given gain variations of
the subsystems 1-3.

For numerical simulation, the following control laws are employed:

ul(k) = —(1 + H]‘Dl(k)Gl)lel(k),
uz(k) = —(1 +H2¢2(k)G2)K2X2(k),
u3(k) = 7(1 +H3¢3(k)G3)K3X3(k),
where @;(k) = I for all i.
The simulation results are in Figs. 1-4. In the figures, one can see that the

system is well stabilized irrespective of uncertainties and controller gain vari-
ations.
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Fig. 2. State responses of subsystem 2.
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Fig. 4. Control inputs for subsystems 1-3.
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Fig. 5. Responses by conventional controller with gain variations.

Now, to briefly show the fragility of a controller designed without thinking
over controller gain variations, consider a stabilizing controller obtained by
classical pole-placement approach of the system (26):

K =[024 03],
-0.3 1

K> = )
0.5 -0.7

Ky =[—0.4235 0.4235],

so that the closed-loop poles (eigenvalues of 4; — B;K;) of each subsystem are
{0.3,0.4},{0.2,0.3}, and {0.3,0.4}, respectively. The system response with the
controller gain variations (27) are given in Fig. 5. From this, one can see that
the conventional stabilizing controller is fragile under the controller gain
variations.

4. Conclusion

In this paper, we have investigated the problem of robust decentralized non-
fragile control of uncertain discrete-delay large-scale systems under controller
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gain variations. Two classes of controller gain variations are considered. Using
the Lyapunov method, the stability criteria for robust stability of the system
are derived in terms of LMI. Finally, a numerical example is given for illus-
tration of controller design, and simulation result shows that the system is well
stabilized in spite of controller gain variations and uncertainties.
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