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Abstract

This paper considers the dynamic output feedback controller design problem for
decentralized guaranteed cost stabilization (GCS) of large-scale systems with time de-
lays in subsystem interconnections. Based on the Lyapunov method, a linear matrix
inequality (LMI) convex optimization problem is formulated to find the controller
which guarantees the asymptotic stability and minimizes the upper bound of a given
quadratic cost function.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A large-scale dynamical system can be usually characterized by a large
number of variables representing the system, a strong interaction between
subsystem variables, and a complex interaction between subsystems [6,11].
Also, time delays are often encountered in large-scale systems because of
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computation data, measurement of system variables, and signal transmission
between subsystems. The existence of the delay is frequently a source of
instability and poor performance. Therefore, the stabilization problem of
large-scale system with time-delay has been one of the most popular research
topics in control systems during the last decades (see [5,7,8,12,13] and reference
therein). However, no further design method is investigated to select a par-
ticular controller amongst all the admissible stabilizing controller. One way to
address this performance problem is to consider a linear quadratic cost func-
tion. This approach is the so-called GCS [2,3,9,14]. Up to date, unfortunately,
the topic of GCS for large-scale systems has been received very little attention.

This paper considers a class of large-scale systems with delays in subsystem
interconnections. Using the Lyapunov method and LMI approach, the design
method of a dynamic output feedback controller for GCS of the system, which
makes the closed-loop system asymptotically stable and guarantees an ade-
quate level of performance, is presented. Existence criteria of the controller for
GCS are derived in terms of LMIs. The LMIs can be easily solved by various
efficient convex optimization algorithms [1].

Notations. Through the paper, R" denotes the n dimensional Euclidean
space, R"*" is the set of all n x m real matrices, and 7 is the identity matrix with
appropriate dimensions. diag{---} denotes the block diagonal matrix. % de-
notes the symmetric part. For X € R, the notation X > 0 (X < 0) means
that matrix X is symmetric and positive-definite (negative-definite).

2. Problem formulation

Consider a class of large-scale system composed of » interconnected sub-
systems described by

xi(t) = Axi(t —I—ZA,jx, — hy) + Bu(t),
J# (1)

yi(t) = Cixi(t), i=12,...,n,

where x;(¢) € R™ is the state vector, u;(¢) € R™ is the control vector, y;(¢) € R” is
the output vector, the time-delays /;; are the positive constants, and the system
matrices 4;, B;, C;, and 4;; are of appropriate dimensions. It is assumed that the
triple (4;, B;, Cy), i =1,. , 1s stabilizable and detectable.

In order to stabilize system (1), let us consider the following dynamic output
feedback controller for subsystem i:

&i(t) = Aciff(t) + Bciyi(t)v

ui(t) = Cciéi(t)v éi(o) =0, (2)
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where ¢&;(¢f) € R™, and 4., B., and C,.; are constant matrices of appropriate
dimensions to be determined later.

The performance index associated with subsystem i is the following qua-
dratic function:

Ji = /0 Oc(xiT(t)Q,-x[(t) + u] ()R (1)) dt, (3)

where O; € R"™" and R; € R"™™ are given positive-definite matrices.
Applying the controller (2) to the system (1) results in the closed-loop system

(1) = Aizi(1) Z Azt — (4)

J=1J#

where fori =1,2,...,n,
- _ Ai BiCci — Al/ 0 o x,—(t)
4= |:Bcici A, :|7 Ai/ |: 0 0:| Zi(t) = |:él(t) . (5)
The corresponding closed-loop cost function is
=209 0 Lwa= [ T0onwd (6)
! 0 0 CIRC,|™ )y = ’

Here, the objective of this paper is to develop a procedure to design a dynamic
output feedback controller (2) for system (1) and performance index (3), such
that the resulting closed-loop system is asymptotically stable and the closed-
loop value of the cost function (3) satisfies J; <J*, where J* is some specified
constant.

Definition 1. For the dynamic system (1) and cost function (3), if there exist a
control law «*(¢) and a positive constant J* such that for all admissible delays,

the closed- loop system (4) is asymptotlcally stable and the closed-loop value of
the cost function (3) satisfies J; <J*, then J* is said to be a guaranteed cost and

u*(¢) is said to be a guaranteed cost control law of subsystem i and its cor-

1

responding cost function (3).

Before proceeding further, we will give a well-known fact.

Fact 2 (Schur complement). Given constant symmetric matrices X, X,, X3
where ¥} = 2] and 0 < X, = X7, then ¥, + X3 X,'%; < 0 if and only if

> X =2 23
{23 _ZJ<O or [2§ 3, < 0.



426 J.H. Park | Appl. Math. Comput. 161 (2005) 423-432

3. Controller design

In this section, two criteria for the existence of a dynamic output feedback
controller (2) for GCS of system (1), will be derived using the Lyapunov theory
and LMI convex optimization technique.

The following is a main result of the paper.

Theorem 3. For given Q; > 0,R; > 0 and h;; > 0, there exists a dynamic output
Jeedback controller (2) for system (1) if there exist positive-definite matrices S;,
Y., Xi, and matrices A;, B;, C; satisfying the following LMIs:

[Q, aY; Y0 6,~TR,- Qo Ag
* ] 0 0 0 0
* * -0, 0 0 0
i 0 7
*x * *x —R 0 0 = 7
* * % *  Qn Sy
L x x ok k k ]
'y, I _
* Si:| >0 for i=1,2,...,n, (8)
where
o=vn-—1,
N 12
Ay = <2AziAiT/> 7
i ‘
)

Qy = A;Y; + VAT + B;Ci + CTB" + (n— 1)X,,
Qn = 4; + AT + %Y, + Y,0,,
Qi3 = SiAi +A;TS1 + CITE;F + E,-Ci + 0{21 + Qi'

Then, the upper bound of cost function for subsystem i is

n 0
i <xT(0)S:x(0) + 21; / KT (), (s) ds2*. (10)
j=1lg#i v~

h ij

Proof. Consider a Lyapunov function for system (4)

V= i V= i (ziT(t)P,-z,-(t) + i / zjr(s)zj(s) ds),
i=1 i=1 j=1y#i 7 t=hij

where ,>0,i=1,2,...,n.
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The time derivative of 7 along with the solution of (4) is

V= ZV Z{ (O)(A' P, + PA,)zi(t) + 22 ( ZAUZ

i=1 J=1j#

=Y G 0s0) — = (e hy) }

J=Li#j
Note that
DD SEACT IR DSEAGE)
i=1 j=1#i i=1

Using the known fact that
ab” + ba" < caa” + e 'bbT, £>0

for any vectors a, b, we obtain

2 iz?(t)P,- izyzj(t — i (z PAd,A Pizi(¢)

JFI i=1
N
+ ZZ,T(I — hyj)z;(t — h,,-)) )
J#i
where
- Az O
Ad[ - |: 61 0:| .

Thus, we have

n

V< ZZ,T DMz (1) = Yz (00:(1),

i=1 i=1

where M; = Zi P+ PA; + P,«Zd,-ﬂdiP,- +m-1I+0,.

427

(11)

(12)

(14)

Therefore, if M; < 0 for all i, there exists the positive scalars 7y, such that

V< =Y 00a(0< = nlx0)lP,
i=1 i=1

(15)

which guarantees the asymptotic stability of the system by Lyapunov stability

theory.

By Fact 2, the inequality, M; < 0, is equivalent to the following inequality:

7'1' — — —
M,E[A,-mmiﬂn—lﬂwi Hﬂd for i=12,...

*

(16)
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Note that in matrix M, the matrices P, and the controller parameters 4,;, B.;
and C,;, which included in the matrix 4;, are unknown. In the following, we will
use a method of changing variables such that the inequality can be solved as
convex optimization algorithms [10].

First, partition the matrix P, and its inverse as

S N | Y M,
el ul o=l ) "

where S;, ¥; € R are positive definite matrices, and M; and N; are invertible
matrices. Note that the equality P~'P, = I gives that

MN! =1-YsS,. (18)
Define
Y, 1 1 S

Then, it follows that

Y, 1

PFy=Fy, FiPFy=FFy= [ ! s

] > 0. (20)

Next, postmultiplying and premultiplying the matrix inequality, M, < 0, by
the matrix diag{F;|,/} and by its transpose, respectively, gives

FIAF) + FI A, Fo + Ff(n — )] + O)Fy  Fidy
- | <o, (21)

By utilizing relations (17)—(20), it can be easily obtained that the inequality
(21) is modified to

(1,1) (1,2) (1,3) 0
*  (2,2) (23) 0
A R (22)
* ok x  —]

where

(1,1) =A4;Y; + YiA;r +BiCciA4[T +M,CIBf + (n— 1YY + Y.0.Y;

cr

+ (n— )MM + M;CLR,CM,

(1,2) = 4; + YA S; + M;C B[ S; + Y,C[BIN + MALN! + (n — 1)Y; + Y0,

crl
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(17 3) = Adia
(2,2) = 84; + NB.C; + A'Si + C/BINT + (n — 1)I + 0,
(2,3) = Sidy.

By defining a new set of variables as follows:

A; = SiAY; + SB,Ci + BiC:Y; + NAaM],
Ei = ]vchia
~ (23)
Ci = CciA/I,’T7
X, = MM,
The inequality (22) is simplified to the following inequality:
Qi+ (n - I)YiYi + YzQzYz + G?Riai Qn  Au 0
* Qi3 SiAdi 0 < 0, (24)
* *x -1 0
* *x k-]

where Q;1, 25, and Q;; are defined in (9).
By Fact 2 (Schur complement), the inequality (24) is equivalent to the LMI

(7).
On the other hand, from (15) we have

Vi< =2 (00z(1). (25)
Integrating both sides of the above inequality from 0 to 7y leads to

/O T 00a(0) < 1(0) - V(). (26)

Since the asymptotic stability of the system has already been established, we
conclude that V' (7;) — 0 as t — oo. Hence we have

n 0
J; <z (0)Pz(0) + Z / z]T(s)zj(s) ds
Ja

= x! (0)Sx(0) + z”: / xf(s)x,—(s) ds=J*. (27)
J=Lj# YT

h[/'

This completes the proof. O
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Theorem 3 presents a method of designing a dynamic output feedback
controller for GCS of system (1). In the following, we will present a method of
selecting the optimal controller minimizing the upper bound of the guaranteed
cost (10).

Theorem 4. Consider the system (1) with cost function (3). For all i, if the fol-
lowing LMI optimization problem,

min i (28)

~ NN~

BiXi,4i,B:i,Ci, Y1,S;

subject to
(i) LMIs(7) and (8), (29)
(ii) {‘f" )iS(())S} <0, (30)

has the solution set (p,, )A(,-, 2,-, E,-, 6,-, Y, Si), the controller (2) is the optimal
dynamic output feedback controller which ensures the minimization of the
guaranteed cost (10) of the system. The optimal cost of each subsystem is

JX = P; + @;, where ®; = Z_;-lzl#,- fi),,ﬁ ij(s)xj(s) ds.

Proof. By Theorem 3, (i) in the optimization problem (28) is clear, and from
Fact 2 (ii) is equivalent to x!(0)Sx;(0) < f;. So, it follows from (10) that
J* = pB; + @;. Thus, the minimization of f; implies the minimization of the
guaranteed cost (10). It is well-known that the convexity of the LMI optimi-
zation problem ensures that a global optimum, when it exists, is reachable. This
completes the proof. [J.

Remark 5. The problem of Theorems 3 and 4 is to determine whether the
problem is feasible or not. It is called the feasibility problem. The solutions of
the problem can be found by solving eigenvalue problem for variables, which is
a convex optimization problem. Various efficient convex optimization algo-
rithms can be used to check whether the LMIs is feasible. A well-known LMI
solver is the Matlab’s LMI Control Toolbox [4], which implements state-of-
the-art interior-point algorithms, which is significantly faster than classical
convex optimization algorithms [1].

Remark 6. Given any solution of the LMIs in Theorem 4, a corresponding
controller of the form (2) will be constructed as follows:

e Using the solution X, compute the invertible matrices M; satisfying the rela-
tion X; = M;M].
e Using the matrix M;, compute the invertible matrix N; satisfying (18).
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o Utilizing the matrices M; and N; obtained above, solve the system of equa-
tions (23) for B, C.; and 4 (in this order).

Remark 7. Uncertainties in system (1) are not considered for simplicity.
However, the results obtained can be easily generalized to system with
uncertainties.

4. Conclusions

In this paper, the design problem of output feedback controller for GCS of a
class of large-scale systems with delays in subsystem interconnections has been
investigated by using the Lyapunov method. Two criteria for GCS have been
presented in terms of LMIs. The LMIs can be easily solved by various efficient
convex optimization algorithms.
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