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Abstract

In this paper, the guaranteed cost control problem for a class of neutral delay-differ-

ential systems with a given quadratic cost functions is investigated. The problem is to

design a memory state feedback controller such that the closed-loop system is asymptot-

ically stable and the closed-loop cost function value is not more than a specified upper

bound. Some criteria for the existence of such controllers is derived based on the linear

matrix inequality (LMI) approach combined with the Lyapunov method. A parameter-

ized characterization of the controllers is given in terms of the feasible solutions to the

certain LMIs. A numerical example is given to illustrate the proposed method.
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Nomenclature

Rn n-dimensional real space

Rm�n set of all real m by n matrices
xT (or AT) transpose of vector x (or matrix A)

P > 0 (respectively P < 0) matrix P is symmetric positive (respectively

negative) definite

I identity matrix of appropriate dimension

H the elements below the main diagonal of a symmetric block

matrix

C0 a set of all continuous differentiable function on given interval

diag{� � �} block diagonal matrix
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1. Introduction

During the last three decades, the stability and stabilization problem of de-

lay-differential systems has received considerable attention and many papers

dealing with this problem have appeared because of the existence of delays

in various practical control problems and also because of the fact that the delay

is frequently a source of instability and performance degradation of systems.

Especially, in recent years, the problem for various neutral delay-differential
systems has also received some attention [1,2]. The theory of neutral delay-dif-

ferential systems is of both theoretical and practical interest. In the literature,

various stability analysis and stabilization techniques have been utilized to de-

rive stability/stabilization criteria for asymptotic stability of the systems by

many researchers [3–9]. On the other hand, in many practical system, it is desir-

able to design the control system which is not only stable but also guarantee an

adequate level of performance. One way to address this problem is so-called

guaranteed cost control [10]. The approach has the advantage of providing
an upper bound on a given performance index and thus the system perform-

ance degradation incurred by time delays is guaranteed to be less than this

bound. Based on this idea, some results have been proposed for discrete-delay

systems [11] and for neutral delay-differential system [12] using memoryless

feedback controller. However, if we design a memory state feedback controller

with feedback provisions on current state and the past history of the state, we

may expect to achieve an improved performance.

With this motivation, we consider a class of neutral delay-differential sys-
tems. Using the Lyapunov functional technique combined with LMI tech-

nique, we develop a guaranteed cost control for the system via retarded

integral state feedback controller, which makes the closed-loop system asymp-

totically stable and guarantees an adequate level of performance. A stabiliza-
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tion criterion for the existence of the guaranteed cost controller is derived in

terms of LMIs, and theirs solutions provide a parameterized representation

of the control. The LMIs can be easily solved by various efficient convex opti-

mization algorithms [13].
2. Problem statements

Consider a class of neutral delay-differential system of the form:

d

dt
½xðtÞ � A2xðt � sÞ� ¼ A0xðtÞ þ A1xðt � hÞ þ BuðtÞ;

xðt0 þ hÞ ¼ /ðhÞ; 8 h 2 ½�H ; 0�;
ð1Þ

where xðtÞ 2 Rn is the state vector, A0, A1, A2, and B are known constant real

matrices of appropriate dimensions, uðtÞ 2 Rm is the control input vector, h

and s are the positive constant time delays, H = max{h,s},
/ð�Þ 2 C0 : ½�H ; 0� ! Rn is the initial vector. In this paper, it is assumed that

the pair (A0 + A1,B) is completely controllable. This is a basic requirement for

controller design.

Now, we are interested in designing a memory retarded integral state feed-

back controller for the system (1) as

uðtÞ ¼ �K xðtÞ þ
Z t

t�h
A1xðsÞds� A2xðt � sÞ

� �
; ð2Þ

where K is a control gain to be designed.

Associated with the system (1) is the following quadratic cost function

J ¼
Z inf

0

xTðtÞQxðtÞ þ uTðtÞSuðtÞ
� �

dt; ð3Þ

where Q 2 Rn�n and S 2 Rm�m are given positive-definite matrices.

Here, the objective of this paper is to develop a procedure to design a mem-
ory state feedback controller u(t) for the system (1) and cost function (3) such

that the resulting closed-loop system is asymptotically stable and the closed-

loop value of the cost function (3) satisfies J 6 J*, where J* is some specified

constant.

Definition 1. For the neutral system (1) and cost function (3), if there exist a

control law u*(t) and a positive J* such that for all admissible delays, the system

(1) is asymptotically stable and the closed-loop value of the cost function (3)
satisfies J 6 J*, then J* is said to be a guaranteed cost and u*(t) is said to be a

guaranteed cost control law of the system (1) and cost function (3).

Before proceeding further, we will state a well known fact and two lemmas.
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Fact 1. The linear matrix inequality

ZðxÞ Y ðxÞ
Y TðxÞ W ðxÞ

� �
> 0

is equivalent to

W ðxÞ > 0; ZðxÞ � Y ðxÞW �1ðxÞY TðxÞ > 0;

where Z(x) = ZT(x), W(x) = WT(x) and Y(x) depend affinely on x.
Lemma 1 [14]. For any constant matrix M 2 Rn�n, M = MT > 0, scalar c > 0,

vector function x : ½0; c� ! Rn such that the integrations concerned are well

defined, thenZ c

0

xðsÞds
� �T

M
Z c

0

xðsÞds
� �

6 c
Z c

0

xTðsÞMxðsÞds:
Lemma 2 [9]. For given positive scalars h and s and any A1, A2 2 Rn�n, the

operator DðxtÞ : C0 ! Rn defined by

DðxtÞ ¼ xðtÞ þ
Z t

t�h
A1xðsÞds� A2xðt � sÞ ð4Þ

is stable if there exist a positive definite matrix C0 and positive scalars a1 and a2
such that

a1 þ a2 < 1;
AT
2C0A2 � a1C0 hAT

2C0A1

H h2AT
1C0A1 � a2C0

" #
< 0: ð5Þ

Differentiating DðxtÞ and combining Eqs. (1) and (2) leads to

_DðxtÞ ¼ _xðtÞ þ A1xðtÞ � A1xðt � hÞ � A2 _xðt � sÞ

¼ ðA0 þ A1 � BKÞxðtÞ � BK
Z t

t�h
A1xðsÞdsþ BKA2xðt � sÞ

¼ ðA� BKÞDðxtÞ � A
Z t

t�h
A1xðsÞdsþ AA2xðt � sÞ; ð6Þ

where A = A0 + A1.

Now, we establish a criterion in terms of LMIs, for asymptotic stabilization of

(1) using the Lyapunov method.
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Theorem 1. Suppose that there exist C0 > 0, a1 > 0, and a2 > 0 satisfying (5).

Then, for given Q > 0 and S > 0, the controller u(t) given in (2) is a guaranteed

cost controller for the system (1) if there exist the positive-definite matrices X, Z1,

Z2 and a matrix Y satisfying the following LMI:

AX þXAT

�BY �Y TBT

 !
Y TS �AA1Z1 AA2Z2 hX X XQ

H �S 0 0 0 0 0

H H �Z1 0 �hZ1A1 �Z1A1 �Z1A1Q

H H H �Z2 hZ2A2 Z2A2 Z2A2Q

H H H H �Z1 0 0

H H H H H �Z2 0

H H H H H H �Q

2
66666666666666664

3
77777777777777775

< 0:

ð7Þ

Also, the gain matrix of the controller (2) is K = YX�1, and the upper bound of

the quadratic cost function J is

J � ¼ DTð0ÞX�1Dð0Þ þ h
Z 0

�h
ðsþ hÞxTðsÞZ�1

1 xðsÞdsþ
Z 0

�s
xTðsÞZ�1

2 xðsÞds;

ð8Þ
where Dð0Þ denotes DðxtÞjt¼0.
Proof. For P > 0, R1 > 0, and R2 > 0, the functional given by

V ¼ V 1 þ V 2 þ V 3; ð9Þ
where

V 1 ¼ DðxtÞTPDðxtÞ; ð10Þ

V 2 ¼
Z t

t�h
ðs� t þ hÞxTðsÞR1xðsÞds; ð11Þ

V 3 ¼
Z t

t�s
xTðsÞR2xðsÞds ð12Þ

is a legitimate Lyapunov functional candidate [1].

Taking the time derivative of V along the solution of (6) gives that

dV 1

dt
¼ 2DðxtÞTP ðA� BKÞDðxtÞ � A

Z t

t�h
A1xðsÞdsþ AA2xðt � sÞ

� �
; ð13Þ
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dV 2

dt
¼ hxTðtÞR1xðtÞ �

Z t

t�h
xTðsÞR1xðsÞds; 6 hxTðtÞR1xðtÞ

�
Z t

t�h
xðsÞds

� �T

ðh�1R1Þ
Z t

t�h
xðsÞds

� �
; ð14Þ

dV 3

dt
¼ xTðtÞR2xðtÞ � xTðt � sÞR2xðt � sÞ; ð15Þ

where Lemma 1 is utilized in (14).

Here, let M = hR1 + R2 and note that

xTðtÞMxðtÞ ¼ DðxtÞ�
Z t

t�h
A1xðsÞdsþA2xðt� sÞ

� �T

�M DðxtÞ�
Z t

t�h
A1xðsÞdsþA2xðt� sÞ

� �

¼DTðxtÞMDðxtÞ�2DTðxtÞM
Z t

t�h
A1xðsÞdsþ2DTðxtÞMA2xðt� sÞ

þ
Z t

t�h
A1xðsÞds

� �T

M
Z t

t�h
A1xðsÞds

� �

�2

Z t

t�h
A1xðsÞds

� �T

MA2xðt� sÞþ xðt� sÞTAT
2MA2xðt� sÞ:

ð16Þ

Then, a new bound of the time-derivative of V is as follows:

dV
dt

¼
X3
i¼1

dV i

dt
6 vTðtÞXvðtÞ; ð17Þ

where

vðtÞ ¼
DðxtÞR t

t�h xðsÞds
xðt � sÞ

2
64

3
75 ð18Þ

and

X ¼

P ðA� BKÞþ
ðA� BKÞTP þM

� �
�PAA1 �MA1 MA2 þ PAA2

H �h�1R1 þ AT
1MA1 �AT

1MA2

H H �R2 þ AT
2MA2

2
6664

3
7775:

ð19Þ
Again, applying the relation (16) to the terms xT(t)Qx(t) and using
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uTðtÞSuðtÞ ¼ DTðxtÞKTSKDðxtÞ; ð20Þ

gives that

dV
dt

6 vTðtÞX1vðtÞ � xTðtÞQxðtÞ þ uTðtÞSuðtÞ
� �

; ð21Þ

where

X1 ¼

PðA� BKÞþ

ðA� BKÞTP þM

þQþ KTSK

0
BB@

1
CCA �PAA1 �MA1 �QA1 MA2 þ PAA2 þQA2

H �h�1R1 þ AT
1MA1 þ AT

1QA1 �AT
1MA2 � AT

1QA2

H H �R2 þ AT
2MA2 þ AT

2QA2

2
666666664

3
777777775

¼
P ðA� BKÞ þ ðA� BKÞTP þKTSK �PAA1 PAA2

H �h�1R1 0

H H �R2

2
664

3
775

þ

I

�AT
1

AT
2

2
664

3
775ðM þQÞ I �A1 A2½ �:

ð22Þ

Therefore, if X1 < 0, there exists the positive scalar c such that

dV
dt

6 � ckxðtÞk2: ð23Þ

By Fact 1, the inequality X1 < 0 is equivalent to

X2 ¼

PðA� BKÞ þ ðA� BKÞTP

þKTSK

 !
�PAA1 PAA2 hI I I

H �h�1R1 0 �hA1 �A1 �A1

H H �R2 hA2 A2 A2

H H H �hR�1
1 0 0

H H H H �R�1
2 0

H H H H H �Q�1

2
6666666666666664

3
7777777777777775

< 0:

ð24Þ

Letting X = P�1, Y = KX, Z1 ¼ hR�1
1 , Z2 ¼ R�1

2 , and pre- and post-multiplying

the matrix X2 by diag{X,Z1,Z2, I, I,Q}, give that X2 < 0 is equivalent to the

following inequality:
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AX þXAT �BY

�Y TBT þ Y TSY

 !
�AA1Z1 AA2Z2 hX X XQ

H �Z1 0 �hZ1A1 �Z1A1 �Z1A1Q

H H �Z2 hZ2A2 Z2A2 Z2A2Q

H H H �Z1 0 0

H H H H �Z2 0

H H H H H �Q

2
666666666664

3
777777777775
< 0:

ð25Þ

Again, by Fact 1, the inequality (25) is equivalent to the LMI (7). This implies

that both the system (1) and (6) with stable operator DðxtÞ are asymptotically

stable by Theorem 9.8.1 in [1]. Furthermore, we have

xTðtÞQxðtÞ þ uTðtÞSuðtÞ < � dV
dt

:

Integrating both sides of the above inequality from 0 to Tf leads toZ T f

0

ðxTðtÞQxðtÞ þ uTðtÞSuðtÞÞdt < V ð0Þ � V ðT f Þ

¼ DTð0ÞPDð0Þ �DTðT f ÞPDðT f Þ
� �
þ

Z 0

�h
ðsþ hÞxTðsÞR1xðsÞds�

Z T f

T f�h
ðsþ hÞxTðsÞR1xðsÞds

 !

þ
Z 0

�s
xTðsÞR2xðsÞds�

Z T f

T f�s
xTðsÞR2xðsÞds

 !
:

As both the operator DðxtÞ and the system (1) are stable, when Tf!1,

DTðT f ÞPDðT f Þ ! 0;

Z T f

T f�h
xTðsÞR1xðsÞds ! 0;

Z T f

T f�s
xTðsÞR2xðsÞds ! 0:

Hence we getZ 1

0

ðxTðtÞQxðtÞ þ uTðtÞSuðtÞÞdt < V ð0Þ

¼ DTð0ÞPDð0Þ þ
Z 0

�h
ðsþ hÞxTðsÞR1xðsÞdsþ

Z 0

�s
xTðsÞR2xðsÞds, J �:

ð26Þ

This completes our proof. h
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Theorem 1 presents a method of designing a state feedback guaranteed cost

controller. The following theorem presents a method of selecting a controller

minimizing the upper bound of the guaranteed cost (8).

Theorem 2. Consider the system (1) with cost function (3). If the following

optimization problem

min
X>0;C1>0;C2>0;Z1>0;Z2>0;Y ;a>0

faþ trðC1Þ þ trðC2Þg

subject to ðiÞ LMI (7)

ðiiÞ �a DTð0Þ
Dð0Þ �X

" #
< 0;

ðiiiÞ �C1 hNT
1

hN 1 �hZ1

" #
< 0;

ðivÞ �C2 NT
2

N 2 �Z2

" #
< 0;

ð27Þ

has a positive solution set (X,C1,C2,Z1,Z2,Y,a), then the control law (2) is an

optimal robust guaranteed cost control law which ensures the minimization of

the guaranteed cost (8) for neutral system (1), where
R 0

�hðsþ hÞxðsÞxTðsÞds ¼
N 1NT

1 and
R 0

�s xðsÞxTðsÞds ¼ N 2NT
2 .
Proof. By Theorem 1, (i) in (27) is clear. Also, it follows from the Lemma 1

that (ii), (iii), and (iv) in (27) are equivalent to DTð0ÞX�1Dð0Þ < a,
hNT

1Z
�1
1 N 1 < C1, and NT

2Z
�1
2 N 2 < C2, respectively. On the other hand,Z 0

�h
ðsþ hÞxTðsÞR1xðsÞds ¼

Z 0

�h
trððsþ hÞxTðsÞR1xðsÞÞds ¼ trðN 1NT

1R1Þ

¼ trðNT
1 hZ

�1N 1Þ < trðC1Þ;Z 0

�s
xTðsÞR2xðsÞds ¼

Z 0

�s
trðxTðsÞR2xðsÞÞds

¼ trðN 2NT
2R2Þ ¼ trðNT

2Z
�1
2 N 2Þ < trðC2Þ:

Hence, it follows from (8) that

J � < aþ trðC1Þ þ trðC2Þ:
Thus, the minimization of a + tr(C1) + tr (C2) implies the minimization of the

guaranteed cost for the system (1). Note that this convex optimization problem

guarantees that a global optimum, when it exists, is reachable (see Remark

1). h
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Remark 1. The problem (27) is to determine whether the problem is feasible or

not. It is called the feasibility problem. Also, the solutions of the problem can

be found by solving eigenvalue problem in X, Z1, Z2, Y, C1, and C2, which is a

convex optimization problem. For details, see Boyd et al. [13]. Various efficient

convex optimization algorithms can be used to check whether the matrix ine-

quality (7) is feasible. In this paper, in order to solve the matrix inequality,
we utilize Matlab�s LMI Control Toolbox [15], which implements state-of-

the-art interior-point algorithms, which is significantly faster than classical

convex optimization algorithms [13].
Numerical Example 1. Consider the following linear differential system of neu-

tral type:

d

dt
½xðtÞ � A2xðt � 0:3Þ� ¼ A0xðtÞ þ A1xðt � 0:3Þ þ BuðtÞ; ð28Þ

where

A0 ¼
0 1

�1 1

� �
; A1 ¼

0 0:5

�0:2 �0:2

� �
;

A2 ¼
0:1 0

0 0:2

� �
; B ¼

0

0:5

� �

and the initial condition of the system is as follows:

xðtÞ ¼ ½ 0:5et �0:5e�t �T; for � 0:36 t6 0:

Actually, when the control input is not forced to the system (28), i.e., u(t) = 0,
the system is unstable since the states of the system go to infinity as t!1.

Here, associated with this system is the cost function of (3) with Q = I and

S = 0.1I.

From the relations Dð0Þ ¼ xð0Þ þ A1

R 0
�0:3 xðsÞds� A2xð�0:3Þ,

N1NT
1 ¼

R 0
�0:3ðsþ 0:3ÞxðsÞxTðsÞds, N2NT

2 ¼
R 0
�0:3 xðsÞxTðsÞds, we have

Dð0Þ ¼
0:3450

�0:3559

� �
; N 1 ¼

0:0876 �0:0402

�0:0402 0:1919

� �
;

N 2 ¼
0:1614 �0:1742

�0:1742 0:2691

� �
:

First, checking the stability condition (5) for operator DðxtÞ gives the solutions:

C0 ¼
0:6284 �0:0002

�0:0002 0:6280

� �
; a1 ¼ 0:3333; a2 ¼ 0:3333:

Next, by solving the optimization problem of Theorem 2, we find the solutions

of the LMIs (27) for the system as
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X ¼
0:4150 �0:2580

�0:2580 0:3868

� �
; Z1 ¼

0:4564 0:1156

0:1156 0:5830

� �
;

Z2 ¼
3:4351 �0:5909

�0:5909 3:6150

� �
; Y ¼ �0:0000 5:0000½ �;

C1 ¼
0:0072 �0:0092

�0:0092 0:0232

� �
; C2 ¼

0:0137 �0:0182

�0:0182 0:0251

� �
; a¼ 0:3752:

Therefore, the gain matrix of stabilizing optimal guaranteed cost controller u(t)

for the system (28) is

K ¼ YX�1 ¼ ½ 13:7189 22:0741 �;

and the optimal guaranteed cost of the closed-loop system is as follows:

J � ¼ aþ trðC1Þ þ trðC2Þ ¼ 0:4444:

However, when the memoryless guaranteed cost state-feedback controller pre-

sented in [12] is applied to the system (28), the optimal guaranteed cost is

5.8617. This shows that the memory guaranteed cost feedback controller im-

proves the performance of the system.
3. Concluding remarks

In this paper, the optimal guaranteed cost control problem via a retarded

integral state feedback controller for neutral delay-differential systems has been

investigated using the Lyapunov method and the LMI framework. The con-

troller can be obtained through a convex optimization problem which can be

solved by various efficient convex optimization algorithms.
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