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Convex Optimization Approach to Dynamic Output
Feedback Control for Delay Differential Systems

of Neutral Type1,2

J. H. Park3

Communicated by F. E. Udwadia

Abstract. In this paper, the design problem of the dynamic output
feedback controller for the asymptotic stabilization of a class of lin-
ear delay differential systems of the neutral type is considered. A cri-
terion for the existence of such controller is derived based on the
matrix inequality approach combined with the Lyapunov method. A
parametrized characterization of the controller is given in terms of
the feasible solutions to certain matrix inequalities, which can be
solved by various convex optimization algorithms. A numerical exam-
ple is given to illustrate the proposed design method.
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1. Introduction

Delay differential equations/systems are assuming an increasingly
important role in many disciplines like mathematics, science, and engineer-
ing. Especially, the stability and stabilization problem for neutral delay
differential dynamic systems has received considerable attention during
the last decades. Many papers dealing with this problem have appeared
because of the existence of delays in various practical control problems
and also because of the fact that the delay is frequently a source of
system instability and performance degradation. The theory of neutral
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delay differential systems is of both theoretical and practical interest. For
various practical examples of neutral systems, see the Refs. 1–3. Recently,
various techniques for stability analysis have been proposed to derive less
conservative stability criteria for the asymptotic stability of several clas-
ses of neutral systems; see e.g. Refs. 4–10 and the references therein. Also,
the design problem of controllers for the stabilization of the systems has
been explored by some researchers (Refs. 11–13). However, these works
are restricted to the static state feedback control schemes, although output
measurement based control is a necessary prerequisite for practical control
problems. Furthermore, in some situation, there is a strong need to con-
struct a dynamic controller instead of a static controller in order to obtain
better performance and better dynamical behavior of the state response. To
the knowledge of this author, the topic of dynamic output feedback con-
trol for neutral differential systems has received little attention.

This paper is concerned with the design problem of the output
dynamic feedback controller for linear delay differential systems of the
neutral type. Using the Lyapunov functional stability theory combined
with a matrix inequality technique, a stabilization criterion for the exis-
tence of the controller is derived in terms of matrix inequalities; their solu-
tions provide a parametrized representation of the controller. The matrix
inequality can solved easily by various efficient convex optimization algo-
rithms (Ref. 15). Finally, a numerical example is given to illustrate the pro-
posed design method.

Notations. �n denotes the n-dimensional Euclidean space, �n×m is
the set of all n×m real matrices, I denotes the identity matrix of appropri-
ate order, and an asterisk represents the elements below the main diagonal
of a symmetric block matrix; ‖ · ‖ denotes the Euclidean norm of a given
vector and the induced norm of a matrix; λm(·) denotes the minimum
eigenvalue of a matrix (·); diag{·} denotes a block diagonal matrix. The
notation W > 0 (≥,<,≤0) denotes a symmetric positive-definite (positive-
semidefinite, negative, negative-semidefinite) matrix W .

2. Problem Statement and Main Result

Consider the class of neutral differential system of the form

ẋ(t)=A0x(t)+A1x(t −h)+A2ẋ(t −h)+Bu(t), (1a)

y(t)=Cx(t), (1b)
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with the initial condition function

x(t0 + θ)=φ(θ), ∀θ ∈ [−h,0], (2)

where x(t) ∈ �n is the state vector, A0,A1,A2 ∈ �n×n,B ∈ �n×m,C ∈ �l×n

are constant system matrices, u(t)∈�m is the control input, y(t)∈�l is the
measured output, h is a positive constant time delay, and φ(·)∈C0 is the
initial vector, where C0 is a set of all continuous differentiable functions
on [−h,0] to �n.

Now, in order to stabilize the system (1), let us consider the following
dynamic output feedback controller:

ξ̇ (t)=Acξ(t)+Bcy(t), (3a)

u(t)=Ccξ(t), (3b)

where ξ(t)∈�n is the controller state and Ac,Bc,Cc are gain matrices with
appropriate dimensions to be determined later. Applying the controller (3)
to the system (1) results in the closed-loop system

ż(t)= Ā0z(t)+ Ā1z(t −h)+ Ā2ż(t −h), (4)

where

z(t)=
[

x(t)

ξ(t)

]
, Ā0 =

[
A0 BCc

BcC Ac

]
,

Ā=
[

A1 0
0 0

]
, Ā2 =

[
A2 0
0 0

]
.

Before proceeding further, we give a well-known fact and two lemmas.

Fact 2.1. Schur Complement. Given the constant symmetric matrices
�1,�2,�3, where

�1 =�T
1 and 0<�2 =�T

2 ,

then

�1 +�T
3 �−1

2 �3 <0

if and only if
[

�1 �T
3

�3 −�2

]
<0 or

[−�2 �3
�T

3 −�1

]
<0.
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Lemma 2.1. See Ref. 16. For any constant symmetric positive-definite
matrix �, positive scalar σ , and vector function ω : [0, σ ] →�m such that
the following integrations are well defined, then

σ

∫ σ

0
ωT (s)�ω(s)ds ≥

(∫ σ

0
ω(s)ds

)T

�

(∫ σ

0
ω(s)ds

)
.

Lemma 2.2. See Ref. 14. For given positive scalar h and any E1,E2,∈
�n×n, the operator D(xt ) :C0 →�n defined by

D(xt )=x(t)+E1

∫ t

t−h

x(s)ds −E2x(t −h) (5)

is stable if there exist a positive-definite matrix 	 and positive scalars α1
and α2 such that

α1 +α2 <1, (6a)[
ET

2 	E2 −α1	 hET
2 	E1

� h2ET
1 	E1 −α2	

]
<0. (6b)

Remark 2.1. The well-known criterion for the stability of the opera-
tor D(xt ) given in (5) is

h‖E1‖+‖E2 ‖<1,

which is more conservative than the criterion (6) (Ref. 14).
To obtain the main result of the paper, let us rewrite the system (4)

in the following form:

(d/dt)

[
z(t)+ Ā1

∫ t

t−h

z(s)ds − Ā2z(t −h)

]
= Āz(t), t ≥0, (7)

where

Ā= Ā0 + Ā1.

Define a new operator D(zt ) :C0 →�n as

D(zt )= z(t)+ Ā1

∫ t

t−h

z(s)ds − Ā2z(t −h). (8)

From Lemma 2.2, we can obtain easily the following lemma, which
will be used in main theorem (Theorem 2.1).
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Lemma 2.3. By Lemma 2.2, the operator D(zt ) is stable if there exist
a positive-definite matrix 	 and positive scalars α1, α2 such that

[
ĀT

2 	Ā2 −α1	 hĀT
2 	Ā1

� h2ĀT
1 	Ā1 −α2	

]
<0 and α1 +α2 <1. (9)

Defining

	 =diag{	1,	2}
and using matrix operations, we see that the operator D(zt ) is stable if
there exist positive-definite matrices 	1,	2 and positive scalars α1, α2 such
that

α1 +α2 <1, (10a)⎡
⎢⎣

m11 0 m13 0
� −α1	2 0 0
� � m33 0
� � � −α2	2

⎤
⎥⎦<0, (10b)

where

m11 =AT
2 	1A2 −α1	1, m13 =hAT

2 	1A1, m33 =h2AT
1 	1A1 −α2	1.

Now, using the Lyapunov stability theory, we estabilish a criterion in
terms of matrix inequalities for the dynamic output feedback controller of
the neutral delay differential system (1).

Theorem 2.1. For given scalar h>0, suppose that there exist matrices
	1 > 0,	2 > 0 and scalars α1 > 0, α2 > 0 satisfying (10). Then there exist a
dynamic output feedback controller (3) for the system (1) if there exist a
positive scalar ε, positive-definite matrices S,Y,X,R and matrices Â, B̂, Ĉ

satisfying the following matrix inequalities:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣


1 εY 
2 −ÂT A2 0 hÂT A1 0
� −εI 0 0 0 0 0
� � 
3 
4 0 
5 0
� � � −εI/2 � 0 0
� � � � −R/2 0 0
� � � � � −εI/2 0
� � � � � � −R/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

<0, (11)

[
Y I

I S

]
>0, (12)
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where

A=A0 +A1, (13a)


1 =AY +YAT +BĈ + ĈT BT +X, (13b)


2 = ÂT +A+ εY, (13c)


3 =SA+AT S +CT B̂T + B̂C + εI, (13d)


4 =−(AT S +CT B̂T )A2, (13e)


5 =h(AT S +CT B̂T )A1. (13f)

Proof. Let us consider the following legitimate Lyapunov functional
candidate (Ref. 1):

V =DT (zt )PD(zt )+ (1/2h)

∫ t

t−h

(s − t +h)zT (s)Rz(s)ds

+ (1/2)

∫ t

t−h

zT (s)Rz(s)ds, (14)

where P >0 and R>0. Taking the time derivative of V along the solution
of (7), we have

dV/dt =2zT (t)ĀT P

(
z(t)+ Ā1

∫ t

t−h

z(s)ds − Ā2z(t −h)

)

+ (1/2)zT (t)Rz(t)− (1/2h)

∫ t

t−h

zT (s)Rz(s)ds + (1/2)zT (t)Rz(t)

− (1/2)zT (t −h)Rz(t −h). (15)

By Lemma 2.1, a bound of the term − ∫ t

t−h
zT (s)Rz(s)ds on the right-hand

side of (15) can be obtained as

−
∫ t

t−h

zT (s)Rz(s)ds ≤−
(
(1/h)

∫ t

t−h

z(s)ds

)T

(hR)

(
(1/h)

∫ t

t−h

z(s)ds

)
.

(16)
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Substituting (16) into (15) gives

dV/dt ≤ zT (t)
(
P Ā+ ĀT P +R

)
z(t)−2zT (t)ĀT P Ā2z(t −h)

+2zT (t)ĀT P Ā1

∫ t

t−h

z(s)ds − 1
2
zT (t −h)Rz(t −h)

− (1/2)

(
(1/h)

∫ t

t−h

z(s)ds

)T

R

(
(1/h)

∫ t

t−h

z(s)ds

)

≡ZT (t)�Z(t), (17)

where

Z(t)=
⎡
⎣ z(t)

z(t −h)

(1/h)
∫ t

t−h
z(s)ds

⎤
⎦ , � =

⎡
⎣P Ā+ ĀT P +R −ĀT P Ā2 hĀT P Ā1

� −(1/2)R 0
� � −(1/2)R

⎤
⎦.

Thus, if the inequality � < 0 holds, there exists a positive scalar γ such
that

dV/dt ≤−γ ‖x(t)‖2 . (18)

In the matrix �,P > 0 and R > 0; the controller parameters Ac,Bc,Cc,

which are included in the matrix Ā, are unknown and occur in nonlin-
ear fashion. Hence, � <0 cannot be considered a linear matrix inequality
problem. In the following, we introduce a change of variables such that
the inequality can be solved via convex optimization algorithms (Ref. 17).

First, partition the matrix P and its inverse as

P =
[

S N

NT U

]
, P −1 =

[
Y M

MT W

]
, (19)

where S,Y ∈ �n×n are positive-definite matrices and M,N are invertible
matrices.

Note that the equality P −1P = I gives

MNT = I −YS. (20)

Define

F1 =
[

Y I

MT 0

]
, F2 =

[
I S

0 NT

]
. (21)

Then, it follows that

PF1 =F2, F T
1 PF1 =FT

1 F2 =
[

Y I

I S

]
>0. (22)
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Now, postmultiplying and premultiplying the matrix inequality � < 0 by
the matrix diag {FT

1 , I, I } and its transpose, respectively, gives
⎡
⎣FT

2 ĀF1 +FT
1 ĀT F2 +FT

1 RF1 −FT
1 ĀT P Ā2 hFT

1 ĀT P Ā1
� −R/2 0
� � −R/2

⎤
⎦<0.

(23)

Here, we define the matrix R as

R =diag{εI,R},

where R is a positive-definite matrix and ε is positive scalars to be chosen
later.

By utilizing the relations (19)–(22), it can be obtained easily that the
inequality (23) is equivalent to

⎡
⎢⎢⎢⎢⎢⎣

m11 m12 m13 0 m15 0
� m22 m23 0 m25 0
� � −εI/2 0 0 0
� � � −R/2 0 0
� � � � −εI/2 0
� � � � � −R/2

⎤
⎥⎥⎥⎥⎥⎦

<0, (24)

where

m11 =AY +YAT +BCcM
T +MCT

c BT + εYY +MRMT ,

m12 =A+YAT S +MCT
c BT S +YCT BT

c NT +MAT
CNT + εY,

m13 =−(SAY +SBCcM
T +NBcCY +NAcM

T )T A2,

m15 =h(SAY +SBCcM
T +NBcCY +NAcM

T )T A1,

m22 =SA+NBcC +AT S +CT BT
c NT + εI,

m23 =−(AT S +CT BT
c NT )A2,

m25 =h(AT S +CT BT
c NT )A1.

By defining a new set of variables as follows:

X =MRMT , (25a)

Â=SAY +SBĈ + B̂CY +NAcM
T , (25b)

B̂ =NBc, (25c)

Ĉ =CcM
T , (25d)
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the inequality (24) is simplified to the following inequality:
⎡
⎢⎢⎢⎢⎢⎢⎣


1 + εYY 
2 −ÂT A2 0 hÂT A1 0
� 
3 m23 0 m25 0
� � −εI/2 0 0 0
� � � −R/2 0 0
� � � � −εI/2 0
� � � � � −R/2

⎤
⎥⎥⎥⎥⎥⎥⎦

<0, (26)

where

m23 =−(AT S +CT B̂T )A2, m25 =h(AT S +CT B̂T )A1,

and 
1,
2,
3 are defined in (13).
By Fact 2.1 (Schur complement), the inequality (26) is equivalent

to the inequality (11). Therefore, by Theorem 9.8.1 of Hale and Lunel
(Ref. 1, pp 292–293), with the stable operator D(zt ) and (18), we conclude
that the systems (1a) and (4) are both asymptotically stable. This com-
pletes the proof.

Remark 2.2. The problem of Theorem 2.1 is to determine whether
or not the problem is feasible. This is a feasibility problem. The solutions
of the problem can be found by solving a generalized eigenvalue prob-
lem in S,Y,R,X, Â, B̂, Ĉ, ε, which is a quasiconvex optimization problem.
Note that a locally optimal point of a quasiconvex optimization problem
with strictly quasiconvex objective is globally optimal (Ref. 15). Various
efficient convex optimization algorithms can be used to check whether
the matrix inequalities (11) and (12) are feasible. In this paper, in order
to solve the matrix inequality, we utilize the Matlab LMI Control Tool-
box (Ref. 18), which implements state-of-the-art interior-point algorithms
and is significantly faster than classical convex optimization algorithms
(Ref. 15).

Remark 2.3. Given any solution of the matrix inequalities (11) and
(12) in Theorem 2.1, a corresponding controller of the form (3) will be
constructed as follows:

Step 1. Using two solutions X,R, compute the invertible matrix M

satisfying the relation X =MRMT .
Step 2. Using the matrix M, compute the invertible matrix N satis-

fying (20).
Step 3. Utilizing the matrices M and N obtained above, solve the

system of equations (25) for Bc,Cc,Ac in order.
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Example 2.1. Consider the following linear differential system of
neutral type:

ẋ(t)=A0x(t)+A1x(t −h)+A2ẋ(t −h)+Bu(t), (27a)

y(t)=Cx(t), (27b)

where

A0 =
[

2 0
1 −1

]
, A1 =

[
0.3 0.1
0.1 0.5

]
, A2 =

[
0.2 0
0 0.2

]
,

B =
[

2
0.5

]
, C = [1,0] , h=1,

and where the initial condition of the system is as follows:

x(t)= [
et ,−et

]T
, for −1≤ t ≤0.

Here, we construct a suitable dynamic output feedback controller of the
form (3) for the system (27) guaranteeing the asymptotic stability of the
closed-loop system. First, let us check the stability of the operator D(zt )
given in (8). By solving the inequality (10), we have

α1=0.3333, α2=0.3333, 	1=
[

0.6354 0.0094
0.0094 0.6542

]
, 	2=

[
0.6213 0
0 0.6213

]
,

which guarantees the stability of the operator.
Next, by applying Theorem 2.1 to this system and checking the feasi-

bility of the matrix inequalities (11) and (12), we can find that the matrix
inequalities are feasible and obtain the solutions of the inequalities,

S =
[

18.1673 1.3411
1.3411 4.8058

]
, Y =

[
3.1978 0.2072
0.2072 0.7007

]
,

R=
[

26.2991 0
0 26.2991

]
, X =

[
16.5116 4.0692
4.0692 1.2521

]
,

Â=
[ −0.8913 0.3856

−0.2001 0.1666

]
, B̂ =

[−47.0197
−6.9813

]
,

Ĉ = [ −17.1857 −3.5982
]
, ε =1.

Therefore, in light of Remark 2.3, the invertible matrices M,N are as fol-
lows:

M =
[

0.7739 0.1699
0.1699 0.1369

]
, N =

[−91.5031 79.1470
−3.5571 −14.9031

]
,
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and the corresponding positive-definite matrix P is

P =

⎡
⎢⎣

18.1673 1.3411 −91.5031 79.1470
1.3411 4.8058 −3.5571 −14.9031

−91.5031 −3.5571 473.5732 −430.7527
79.1470 −14.9031 −430.7527 490.7836

⎤
⎥⎦.

Then, we can get the following stabilizing dynamic output feedback con-
troller for the system (27):

Ac=
[−12.7534 0.0442

−3.9491 −1.0211

]
, Bc=

[
0.7618
0.2866

]
, Cc= [−22.5880 1.7430] .

The simulation results are in Figs. 1 and 2. From the figures, one can see
that the system is indeed well stabilized.

3. Concluding Remarks

We have investigated the problem of the stabilization of a class of
neutral delay differential systems. Then, we have designed a dynamic out-
put feedback controller which guarantees the asymptotic stability of the

Fig. 1. State responses of the system.
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Fig. 2. Control law of the system.

systems and have derived a stabilization criterion in terms of matrix
inequalities which can be solved easily by various efficient convex optimi-
zation algorithms. Finally, a numerical example is given to illustrate the
design procedure.
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