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Abstract. In this paper, we propose a design method of guaranteed cost
controllers for uncertain large-scale systems with time delays in subsystem
interconnections using delayed feedback. Using the Lyapunov method, a lin-
ear matrix inequality (LMI) optimization problem is formulated to design
a delayed feedback controller which minimizes the upper bound of a given
quadratic cost function. A numerical example is included to illustrate the
design procedures.
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1. Introduction

Recently, stabilizing control schemes for large-scale interconnected systems
such as electrical power systems, communication networks, social systems, chem-
ical processes, and economic systems have become more interesting. In con-
trolling such systems, decentralized controllers are much preferred because the
interconnected systems can be decomposed into several lower-order subsystems
such that the design procedures are simplified and the computational burden
can be shared by all the subsystem controllers. On the other hand, time delays
due to the information transmission between subsystem interconnections exist
naturally in large-scale systems and it is well known that their existence is a
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source of instability and poor performance of the systems. Hence, the stabi-
lization problem of uncertain large-scale systems with time delays has received
considerable attention by many researchers (see e.g. Refs. 1-8 and references
therein). For instance, delay-independent stability conditions have been derived
by Ikeda and Siljak (Ref. 1), Bakule (Ref. 2), Wu (Ref. 5), Won and Park
(Ref. 6), and Park (Refs. 7, 8); delay-dependent criteria have been considered
by De Souza (Ref. 3) and Tasy et al. (Ref. 4). In general, delay-dependent criteria
are less conservative than delay-independent ones when the time-delay is small
(Ref. 9).

When designing controllers, it is desirable to ensure satisfactory system
performance. One possible approach to this problem is the so-called guaranteed
cost control which was first introduced by Cheng and Peng (Ref. 10). Since this
approach was represented by the LMI framework (Ref. 11), some researchers
tackled the problem of the guaranteed cost control for several class of uncertain
dynamic systems (Refs. 12—-14). More recently, Xie et al. (Ref. 22) investigated
the decentralized guaranteed cost control for uncertain large-scale interconnected
systems. Mukaidani et al. (Refs. 23-24) extended the work to systems with time
delays in the subsystems. However, time delays in the subsystem interconnections
was not considered in Refs. 23, 24.

In this paper, we consider the design problem of a decentralized guaranteed
cost controller for uncertain large-scale systems with time delays in the subsystem
interconnections. A delayed feedback controller has been proposed for the control
scheme of the system. The delayed feedback controller with feedback provisions
on the current state and past history of the state may improve system performance
(Refs. 15, 16). For designing delayed feedback controllers, we use a neutral
model transformation (Ref. 18). Using the Lyapunov function method, a convex
optimization problem is formulated to construct the delayed feedback controller
which stabilizes the resulting closed-loop systems and minimizes the upper bound
of the cost function. A delay-dependent stabilization criterion is derived in terms of
LMIs which can be solved efficiently by various convex optimization algorithms
(Ref. 17).

2. Preliminaries

The following notations are used in the paper. R" is the n-dimensional
Euclidean space, R™*" denotes the set of m x n real matrices, * denotes the sym-
metric part, X > 0 [X > 0] means that X is a real symmetric positive-definitive
matrix [positive semidefinite], / denotes the identity matrix with appropriate di-
mensions. Amin(X) and Ap,(X) are the minimum and maximum eigenvalues of
X, || - || refers to the induced matrix 2-norm, diag{---} denotes the block di-
agonal matrix, C,; = C([—h, 0], R") denotes the Banach space of continuous
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functions mapping the interval [—#, 0] into R”, with the topology of uniform
convergence.

We need the following well-known facts and lemmas to obtain the main
results.

Fact 2.1. Schur Complement. Given the constant symmetric matrices
3y, 5y, T3, with £ = X and 0 < £, = =7, then
4+ 2Ies <0

if and only if
z =I -3 X3
<0 or <0
T =%, DL N

Fact 2.2. For given matrices D, E, F, with FT F < I and scalar € > 0, the
following inequality is always satisfied:

DFE + ETFTDT <eDDT + ¢ 'ETE.

Lemma 2.1. See Ref. 25. For any z, y € R and any positive-definite
matrix X € R"*", the following inequality holds:

27"y <"X'z + y" Xy.

Lemma 2.2. See Ref. 19. For any constant matrix M € R"* M = M"T >
0, scalar y > 0, and vector function w : [0, y] — R" such that the integrations
concerned are well defined,

Y r Y Y
(/ a)(s)ds) M (/ a)(s)ds) < y/ o ($YMw(s)ds.
0 0 0

Lemma 2.3. See Ref. 20. Consider an operator D(-) : C,, — R", with
Dx,)=x(t)+ B j;ih x(s)ds,where x(t) € R" and B € R™*". For a given scalar
8, with 0 < § < 1, let a positive-definite symmetric matrix M exist such that

—SM hB™M
R < 0.
hMB —-M

Then, the operator D(x;) is stable.
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3. Problem Statements

Consider an uncertain large-scale system composed of N interconnected
subsystems described by

X (1) = (A; + AADx; () + (Aii + AADxi(t — hy)

N
+ Y (Ai+AA Xt — hij) + (Bi+ABui(t), i=1,....N,
J=1,j#i
xi(s) = ¢i(s), s¢€ [— max{h;}, 0], ey
tJ

where x;(t) € R" is the state vector, u;(t) € R™ 1is the control in-
put, A;, Aj;, Ajj, B; are known real matrices of appropriate dimensions,
AA;, AA;;, AA;j, AB; are norm-bounded time-varying uncertainties, /;; and &;;
are the known constant delays, and ¢; (s) is a given continuous vector-valued initial
function.

The parameter uncertainties are assumed to be in the form

AA; = D Fi;(OE;, AA;; = Dyii Faii(t) Egii
AA;j = Dyij () Eqyij,  AB; = D3 F3()E3;,
where Dy;, Dy;j, D3, Eyi, Eoij, E3i,0, j =1,...,N,i # j, are known real con-

stant matrices of appropriate dimensions, and where Fy;(t), Fy;i(t), F»;;(t) are
unknown matrices, which satisfy

FLtFu@t) < I, k=1,3, (2a)
Fy (D Fyj(t) < I, Fp(DFgi(t) < I. (2b)

It is assumed that the pair (A; + A;;, B;) is controllable and that the measure-
ments of the state x;(¢) and the time delay 4;; are always available.

In this paper, in order to evaluate the system performance, we define the
following integral quadratic cost function for the subsystem i:

Ji = f h [x/ (ORyixi(t) + ul ()R,u;(1)] dt, (3a)
0

where R,; > 0 and R,; > O are the given state and control weighting matrices.
The total cost of the system (1) is

N
J = Z J;. (3b)
i=1



JOTA: VOL. 129, NO. 3, JUNE 2006 395

Definition 3.1. For the system (1) and cost function (3), if a control law
u}(¢) and a positive scalar J* exist, such that, for all admissible uncertainties, the
resulting closed-loop system is asymptotically stable and the closed-loop value
of the cost function satisfies J; < J, then u*(¢) is said to be a guaranteed cost
control law for the system (1) and J;* is said to be a guaranteed cost of the ith
subsystem.

Consider a controller in the form
1
ui(t) = K, [xi O+ [ (s)ds] , @)
t—=hi;
where K; € R™ " is a controller gain matrix for the ith subsystem.

Problem 3.1. Consider the system (1)—(3). The goal is to design the ma-
trices K; so that the controller (4) is a guaranteed cost controller for the system
(1)—(3) by using a delay-dependent approach.

4. Controller Design

In the section, we propose a design method of a guaranteed cost controller for
the system and use the neutral model transformation method (Ref. 18) as follows:

zi(®) = x;(t) + [ Ajixi(s)ds. &)
t—hj;

The guaranteed cost controller (4) is rewritten as
u;(t) = K;z;(t). (6)

Substituting the controller (6) in the system (1), the resulting closed-loop system
is

Xi(1) = (A; + AA)Dx; (1) + (A + AA;)xi(E — hyi)
N
+ Y (Aij+AADx(t—hij) + (Bi+AB)Kizi(1), i=1,....N.
J=L1j#i
(7

Differentiating z;(¢) with respect to ¢ leads to

Zi(t) = %;(t) + Ajix; (1) — Ayixi(t — hy)
=[A; + AA;(t) + A;i +(B; + AB)K;]z;(t)
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N
+ Z(Aij + AA;j)x;(t — hij)
J#
t
— (A + Ay + AAi(l))/ Aiixi(s)ds + AA;xi(t — hip). ®)
t—hi;

For simplicity, we define

N 12
Dy = Z DzijDzTij , &)
Jj=Lj#
N
Y= (A + Ai)Xi+Xi(A + Aii)T+Z A,-jX,-inTj + B;Y; + Y B!
J#i
+ (e1; + €41)D1i D], 482 Dgi; D), + €3:D3; DY, + €5: Dagi D3 yi,s
(10)
0
NiiNj; = f ¢i($)$] (s)ds, (11)
_hh
0 0
NaiiNgi; = / / ¢i()p/ w)duds, (12)
—hii Js
0
NaijNgij = / ¢;(5)$] (s)ds, (13)
—hij

where X; and X;; are positive-definite matrices, Y; is a matrix with appropriate
dimensions, €y;, &2;, €3;, €4;, €5; are positive scalars. Then we have the following
theorem.

Theorem 4.1. Consider the system (1) with the cost function (3). For given
delays h;;, consider the following optimization problem:

N
minimize { «; + Trace (M,’,' + Myi; + Z (Mdij)) , (14)

J=1j#i
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subject to
_Ei —(Ai + Ai)Aii Ri; hii Xi
* —Ri;
* * —R;;
* * *
* * *
* * k
* * *
* * *
* * *
* * *
* * *
_* * *
<0,
[—W, W,EL
i iEgii
<0,
* —&pi 1
—w;,; W,EL W,
ij ij&2ij i
* —82,'1 0
* * —Xi
* * *
* * *
B T
—a; z; (0)
<0,
*k —X,'
B T
Mii N,','
<0,
* —Wi
[—Mgi  hiNE
dii < 0’
* —h;iRi;
[ M, NT.
! diji | <.
* —VV[j

X; X;

0 0
-R 0
* —-W;
* *
* *
* *
* *
* *
* *
* *
0
0
—Xin

Xi

—hii R AL —Ri; Al —R; AL —R;AL ...

0

0

0
—Wii

< 0,

X; 0 X El, Y'EL
—Ri; Al R;ALEL 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0
— Wi 0 0 0
* —eqi 1 0 0
* * —e;i 1 0
* * * —e3il
* * * *

Jj=1...,N,j#i,

397
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A7)

(18)

19)

(20)
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Assume that problem (15)—(21) has solutions with positive-definite ma-
trices X;, Xij, Rii, Mij, Mgi;j, Mgij, Wi, Wi;, matrix Y;, and positive scalars
i, €1is €2i5 €3, €4i, €5i. Then,
-1
ui(t) =Y X; zi(t)

is the guaranteed cost controller for the system (1) and minimizes the upper bound
of the cost function (3) as

N
Jl_* =|o + Trace (Mii + Md” + Z(Mdij)> . (22)
J#

Proof. Consider the following Lyapunov function candidate

N
V() =) Vit)

i=1

N t
S LT opzn + / 5T () Tixi(s)ds
i—1 t—hi;

t t N t
—l—/ / xiT(u)Qiix,-(u)duds—i—E / xiT(s)T,-jxj(s)ds , (23)
t—hii Js . Ji—h;
i J#i Y

i

where the matrices P;, T;, Q;;, Ti; are positive definite. Taking the time derivative
of V(1) leads to

N
Vi =Yy {2zf(r)Pi(Ai + Aii + AA; + (B + AB)Ki)zi (1)

i=1

t t
-2zl (O P(A; + Au+AAi)/ Ajixi(s)ds —[ x] (8)Qiixi(s)ds
i t—hy;

N

+2Z] (P AAuxi(t — hig) +22] (0P Y (Aij + AAy)x;(t — hyj)
J#L

+ x (OTix;(t) — x] (¢t — hip)Tixi(t — hig) + hizx! (£) Qiixi(t)

N
+ > (F OTyxj() = x] (¢ = hi) Ty (¢ — h,»,»))}. (24)
J#
Define
N
V)=V + Y [x] ORuxi(t) + ul (ORu(®)] . (25)

i=1
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Note that, if V(t) is negative, then V() is negative.
Using Fact 2.2 and Lemma 2.1, we obtain

N N
Y 2zl 0P Ayx(0)
i=l J#

N N
< Y d 0P Y Ayx;AL | Pz
i=1

J#
N N
+ZZX,-T(I — hip)X;; Xt = hip), (26)
i=1 j#i
N
ZZZiT(f)PiDliFli(t)EuZi(f)
i=1
N N
< ZsuZiT(t)PiDuDlTiP,-z,-(t) + Zs;'ziT(t)ElTiElizi(t), 27
i=1 i=1

N
ZzziT(t)PiDdiiFdii(t)Ediixi(t — hii)
i=1

N
<Y 2z (t)P; Dyi; Dy, Pizi(t)
i=1
N
+ ZSil[X,-T(l—hii)EdT,-,-Ediixi(l — hip)]. (28)
i—1

N
> 22! (t)Pi Dy F3i (1) E3 K;2i(t)

i=1
N N

<) ezl (VP D3 DY Pizi(t) + Y e3'z] (0K EL EsiKizi(0), (29)
i=1 i=1

N t
Z 2z] (t)P; Dy Fii(1)E); f Aiixi(s)ds
i=1 t_hu'

=<

N
exz; (t)P;Dy; DY, Pizi(t)
=1

i

N ¢ T .
+ Z |:g;l ([ \ xi(S)dS> AiTiElTiEliA,‘,‘ ([ , x,(s)ds)], 30)
i=1 — i —hj;
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N N
Y22/ P Y DaijFaiy () Eijx(t = hiy)
i=1 J#i

es,z? (t)P; D24 D3 ; Pizi(t)

H'Mz

Zesl Zx (t = hi))EL; Enijx;(t — hij). (1)
i=1 JFEi

Here, note that

sz (r)T,,x,(o—Zx () Z xi(t) (32)

i=1 j#i JF#L
and define
N
T =hiiQii + R + Ti + Y_ T (33)
J#L
Then,

T

x] OTixi(t) = [Zi(f) —/ A,-,»x,-(s)ds}
t—hi;

T; [Zi(l) —/ Aiixi(s)dsi|
t—h;;

t
=7/ OTizi(0) — 22] OT; / Aiixi(s)ds
t—h;;

t T t
+ [ / A,-ixi(s)ds] T; [ / A,»ixi(s)ds} . (34)
t—hi; t—hj;

Substltutlng (26)—(32) and (34) into (24) and applying Lemma 2.2 to the term
— f iy Xi T($)Q;ix:(s)ds, we see that V() has a new upper bound as follows:

N zi(®) TG zi(t) i
; f p, Xi(8)ds i fihv_x,-(s)ds ’

N
Z T(t hu)( T +5£1Ed”Ed”)xt(t hll)]
Z

N
Z [x] ¢ — hip)(— Tyj + &5 EL Enij + X;5')x(t = hip)]. (35)
J#i
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where
Xu+T1 G

a7 Gl S

Gin = —Pi(A; + AiDAi; — T A, 37

Gin = _h,‘_ilQii + A,?;]A}Aii + SLIA,?;ElTiEnAii, (38)
N

i = P(Ai + Ai) + (A + Ai) P+ P, ZAi_in_T,'Ai_j P;
J#i

+ PiBiK; + K/ B/ P, + (¢1; + £4)) PiD\; D} P;
+ £2i Pi Dyii D}j;; P; + €3; P; D3; D3, P;
+ 65, PiDygi DY P+ ey  ELEy; + 63 KT ELE3i Ki + KT Ry K.

(39)
From (35), if the following inequalities hold:
G; <0, (40)
—T; + 351E5iiEdii <0, (41)
N
D[ T+ 5 EiEay + X' <0, (42)
J#i
fori =1, ..., N, then there are positive scalars A; satisfying
Vi) < =aillzi @I (43)

From (36) and (38), the inequalities G; < 0 imply G2, < 0, which guarantee that
—h;' Qi + AL T Aii < 0. (44)
Also, from relation (33), the inequality (44) implies
—h,;l Qii +hi Al QiiAii < 0. (45)

If the above inequality (45) holds, then we can prove that there is a scalar 0 <
8; < 1 such that

—8; Qi hii AL Qii
[ ¢ nQ } <o, (46)
* — Qi

by Fact 2.1 and matrix theory. Therefore, if G; < 0 holds, then

24() = () + / Anxi(s)ds
t—hi;



402 JOTA: VOL. 129, NO. 3, JUNE 2006

is a stable operator by Lemma 2.3 According to Theorem 9.8.1 in Ref. 18, we
conclude that the system (7) is asymptotically stable.
Again, using Fact 2.1, G; < 0 is equivalent to

(=4 —Pi(Ai + Ai)Aj; hii 1 1 I I e I ]
—h;' Qi
* —h; AL —-AL  —-AL  —-AL ... Al
+e;' ATETEy; Ay
* * —hi:Q;' 0 0 0 0
-1
* * * —R; 0 0 0 -o.
* * * * —Tl.‘1 0 0
* * * * * Tf.l 0
* * * * * * 0
L * * * * * * TAjll_
47)
Let
X,‘ = ])i_]’ Wi = T}_l, W = T_ ” - hlz ”17 Yl = KiXi' (48)

ij
Postmultiplying and premultiplying the matrix inequalities (47), (41), (42) by the
matrices diag{X;, R;;, I, 1, 1,1, ..., 1}, W;, W;;, the inequalities (47), (41), (42)
are equivalent to the inequalities (15), (16), (17) by using Fact 2.1. Therefore,

the system (1) under the controller (3) is asymptotically stable if (15), (16), (17)
hold.

Now, we state the minimization of the upper bound of the cost function (3).
If the inequalities (15), (16), (17) hold, then from (25) we have

Z Vi(t) < — Z [x] (O Rixi(t) + u] () Ruiui(1)] < 0. (49)

i=1

Integrating both sides of (49) from 0O to 1, gives
N Ly ty Iy
PR EA I AIES / X/ () Tixi(s)ds+ f / x] () Qiixi(u)duds
i=1 ty=hii '

+Z/ x] (9)Tijx;(s)ds — z] (0)Piz;(0) — / ¢/ ()T;¢i(s)dss
J#i
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0 0
- fh / ¢f<u>Qii¢,-<u>duds—Z f ¢7 ()T, (s)ds

JF#

N t
<- Z /0 ! [x] (ORyixi (1) + u] (1) Ryiui (1)]ds. (50)

Since we have established already the asymptotic stability of the closed-loop
system (7), when t; — o0,

z (tp)Pizi(ty) — O,
Iy
/ X; T($)Tixi(s)ds —> 0,
/ / X; T(w)Qiixi(w)duds —> 0,
tp—hi;
7
Z/ x,-T(s)T,-jxj(s)ds — 0.
i [f*h,’j ’

Therefore, we obtain the upper bound of the cost function (3) as

0
B =2l OPizi(0) + / o7 (5)Tih (5)ds
/ / 5T 0 wduds + 3 / oI Tyds)ds. (51
hii Js J#i

If the LMIs (18), (19), (20), (21) in Theorem 4.1 hold, then the following inequality
holds:

N
o; + Trace <M,-,- + My + Z Mdij)
J#i

> 7/ (0)X; 'z;(0) + Trace I NEW "Ny + N (hi R ) Naii

N
+ ZNdT,-jWJINdU}, (52)
J#
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as can be seen by applying Fact 2.1 to the LMIs (18), (19), (20), (21) and adding

each term. Since P, = X;  and

0
/ ¢! ()Tii(s)ds = Trace(N; N W)
—hii
= Trace(N;W,-_lNii)’ &)
0 0
/ f ¢/ () Qi (w)duds = Trace(Naii Ngy; Qi)
—hi;i Js

= Trace(NdTii QiiNdii)

= Trace(N,;hiR;;' Naii), (54)
Z/ @] () Tijgp;(s)ds = Z/ o] () Tijp;(s)ds
J#i J#i
N
= ZTrace(Nd,‘deTijT}j)
j#i
= ZTrace Ny Wi Naij). (55
J#

we obtain

N
2 (0)X ' 7:(0) + Trace!le W 'Nii 4+ N1 (hii R, D Ngii + Z NdTij Wl-;lNdij
£

0 0 0
= Z[T(O)Pizi(o)+/ ¢/ ($)Tii(s)ds +/ / ¢! () Qiidi(w)duds
—h;i Js

iy / #7 ($)T;1;(5)ds. (56)
J#

From (51) and (56), it is obvious that the upper bound of the cost function (3) for
each subsystem is J* given in (22). Therefore, the controller
wi(t) = Y X7 'zi(0)

constructed from Theorem 4.1 is the guaranteed cost controller minimizing the
upper bound value of the cost function (3). This completes our proof. ]

Remark 4.1. Since conditions (15)—(21) in Theorem 4.1 are LMIs with
respect to the solution variables, various efficient convex algorithms can be used
to ascertain the LMI solutions. In this paper, we utilize the Matlab LMI Control
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Toolbox (Ref. 21) which implements interior-point algorithms. These algorithms
are significantly faster than classical convex optimization algorithms (Ref. 17).

Remark 4.2. Recently, a new delay-independent stability criterion for un-
certain large-scale system with delays has been presented by Mukaidani (Ref.
24). The system considered in this work (Ref. 24) does not have the delays in the
subsystem interconnection. However, our result is delay-dependent and our work
considers the delays in the subsystem interconnections. Note that it is well-known
that the delay-dependent criterion is less conservative than the delay-independent
one when the delay is small. Another advantage of the method proposed in this pa-
per is that it can be applied to systems in which the pair (A;, B;) is uncontrollable,
since our work use the assumption that (A; + A;;, B;) is controllable.

5. Numerical Example

Consider the following uncertain large-scale systems with N = 3:

e 07, 045 0457 oo
X()= 4 3 +AA (1) x1()+ 0 045 + AA (1) px1(1 —0.9)

~05 0.1
+ {[ } + AAlz(t)} @ —1)

03 0

—04 02 N 1 0 . .
oo o0s]™ @) x— D+ T W) tui(r),  (57a)

es+1
¢1(s)=[ 0 } s €[-1,0], (57b)
-4 0

.1
Xo(t) = ”: i| + AAz(t)}xz(f)
-2.5

0
—0.675 0.675
0 0.45

+ :| + AAzz(l)}Xz(f -0.3)

5
| j| + AAzl(f)}xl(l -1

+

[0.3 -0

+

02 0
02 0s] 1 .., .
o1 op|TAARORE=DA | N F AR U, (570)

__,0.5s

[0 seO-SS}
$2(s) = . se[=10] (57d)
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. _ -2 0 AA
X3(t) = 09 + AA3() ¢ x3()

(579)

0

—045 0

+H }MAggm}xg(z —07)
—0.45 —0.45
03 0.1

+{|: :|+AA31(I)}X1(I—1)
0.1 03
02 04 {

”0.1 0.3} - AA”(’)} =D+ { [1} + AB;(:)} wy(0),  (57¢)
_[ose o
h(s) = 0se |’ s e[—1,0].

[0 o] 10
AA (1) = 02 02 sin(2t) o 1l

s 0 0 |eososn| !t ©
= cos(0. ,
12 0.1 02 0 1

0
AAp@) = o1 cos()[0 1],

0.1
AA;(@) = 0 1:| cos()[0 1],

[0 o] 1 0
AAy(t) = 01 01 sin(2t) o 1l

s = | © 0 Lsinosn | ©
22 = 02 02 Sim(v. 0 1 s

01]
Adn() = | J sin30)[1 1],

0.1 .
AAxy(t) = 0 1:| sin(3r)[1 0],

[0 0 1 0
AA5(t) = 02 0.1 cos(2t) 0o 11’
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AA (t)—_o 0 in(0.5¢) 01
=102 0270 1]
AA (t)—_o'l- in(3H[1 1
nW=\ sin(3¢#)[ 1,
[0.2]
AAxp(t) = 0 sin(3)[1 0],
AB(t [ 0] 2t
1) = 0.1 cos(21),
A By (¢ 017 3¢
H(1) = 01 cos(3t),
[0.1]
AB;(t) = 0 cos(31).

The weighting matrices are chosen as

02 O 0.1 O
Rxl = ’ Rul = 025 Rx2 = s
0 02 0 0.1

02 0

2 3 [0 0.1

] . R;s=0.2.

By applying Theorem 4.1 to the above system, we found the solutions of the LMIs
to be

[ 00641  —0.0295 _[oas91 02007
"7 120.0295 0.2664 |’ >~ 102007 0.4528]"
_ [0.0952 0.0588 o [0.5587  2.5955
7100588 0.1377]° 27125955  13.1555 |
[0.3200  0.5540 [15.8485 8.1079
X13: i X21: ’
0.5540  1.1855 8.1079  4.8051
X [ 60.4800 —24.2279 [11.14137  11.1799
37 2242279 99646 | ' T | 11.1799  12.3407 |’
[ 21.6904 —19.2685
Xy = .Y, =[0.0001 —4.5133],
~19.2685  19.0277
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Y, = [0.0021
0.3169
Ry =
0.0549
0.0774
R3z =
—0.0726
€31 = 462535,
Ep = 85665,
€13 = 00039,
€53 = 1.3864,
4.7303
W, =
[—0.1241
0.8579
7 —0.0701
[0.0441
Wiz =
0.0596
W [ 1.3271
27 201271
[ 0.5978
Wi =
—0.1349
y [22.1174
d22 = 0
o [15.7579
dl12 — 0
y [3.1601
d2l — 0
y [15.0269
d3l — O
[0.9287
M =
0
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—4.1071],

—0.0549
0.1751|°

—0.0726
0.2118 |’

e41 = 2.9860,
&3 = 70292,
£23 = 00062,

—0.1241
4.3675 |

0.9228

0.0596
0.2095 |

—0.4271
0.3261 |’

—0.0701}

—0.1349
0.6563 |’

0
0.4692 |’

0
0.4692 |’
0
0.4692 |’

0
0.4692 |’

0
0.4692 |’

Y; = [0.0021 —4.1071],
0.2050 0.2661
Ry = )
0.2661  0.3908
€11 = 38551, &1 = 48979,
es; = 0.1996, &1, = 14.3724,
ep = 6.0140, &5, = 2.5612,
€33 = 1.0021, E43 = 00863,
6.6552  0.6488
W, = ,
0.6488  7.4779
[0.0545  0.1029 ]
Wi = ,
0.1029  0.3833
[1.1252  0.1058 ]
Wo = ,
0.1058  0.3575
[0.7455  0.2239]
W3 = ,
0.2239  0.6369
[5.5922 0
Wai1 = ,
0 0.4692
y [2.4302 0
B=1 0.4692 |
[28.5932 0
Myi3 = ,
0 0.4692
Y [1.6298 0
R 0.4692 |
y [1.3184 0
432 0 0.4692 |
0.5233 0
22 = )
0 0.4692
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3 T T T T T
_ x"(t) by DFC
J— xn(t) by SFC
25 .= X,,{t) by DFC H
. X,(t) by SFC
2r ]
15F N
1 N
0.5 E
0 -
-0.5¢ i
h_.
-1 T _// T
\ ./«’
-15 Vs ! 1 ! 1 !
0 2 4 6 8 10 12
Time (Sec)
Fig. 1. State responses in Subsystem 1.
1.0526 0
M3 = ,
0 0.4692
o) = 65.2342, o, =6.3032, a3 = 28.0545.
Thus, the stabilizing controllers are
ui(t)=Kiz1(t) = Y1 X7 '21(1)
t
=[-7.6225 —16.5473] (xl(t) —i—/ Allxl(s)ds) , (58a)
1—0.9
ur(1) = Kaza(t) = Y2 X5 ' 25(1)
t
=[26.0129 —20.6013] <xz(t) +/ Angz(S)dS) , (58b)
1—0.8
us(1) = Ksz3(1) = Y3X5 '23(t)
t
=[-23.4345 —10.7930] (X3(l) —I—/ A33x3(s)ds> , (58¢)
1—0.7
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I
08l _ x21(t) by DFC ||
— X,,(t) by SFC
. xzz(t) by DFC
061 — . X(t) by SFC [|

1

o

»H
T
1

-

6
Time (Sec)

Fig. 2. State responses in Subsystem 2.

and the guaranteed costs for each subsystem are obtained as follows:

Ji =ay + Trace(M11 + Mg + Mgz + Mgi3) = 117.9849,
‘IZ* =y + Trace(My + Moo + Mypy + Myr3) = 35.6107,
J; = a3 + Trace(M33 + My33 + My31 + Myzp) = 39.7595.

In the numerical simulation, two types of controller are implemented. One is the
delayed feedback controller (DFC) (58); the other is the standard memoryless
feedback controller (SFC),

u;(t) = K;x;(t).

The simulation results for the system (57) are illustrated in Figures 1-4. From
the figures, we can see that the delayed feedback controllers (58) yield better
performance than those of the memoryless feedback controllers, which do not
have integral term in (58). Finally, note that the system (57) is unstable when the
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T T T T T

— %,,() by DFC
— X,,(t) by SFC
- Xg,{t) by DFC
04} .. Xg,(t) by SFC

1 1 1 L 1

6
Time (Sec)

Fig. 3. State responses in Subsystem 3.

pure delay controller,
t
u;(t) = K; / Ajixi(s)ds,
t_hu'

is implemented.

6. Conclusions

In this paper, a decentralized delayed feedback controller design method
was proposed for the guaranteed cost stabilization of uncertain large-scale inter-
connected systems with time delays. Based on the Lyapunov function method, a
stabilization criterion has been derived in terms of LMIs. Using a numerical ex-
ample, we showed that the obtained controllers stabilize the system and guarantee
an adequate level of performance in spite of the uncertainties.
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10 T T T T

I
; — u, by DFC
¥ — u, bySFC
I -—- u,byDFC
st .= u, by SFC |
| .. u by DFC
| . u by SFC

1 1 1 1 1

0 2 4 6 8 10 12
Time (Sec)

Fig. 4. Control inputs.
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